醤油 AI 色番号判定支援システムの開発

Development of Soy Sauce Al Color Number Judgment Support System

電子・機械技術部 電子・情報科 三瓶史花 会津若松技術支援センター 醸造・食品科 齋藤啓太

食品業界は香りや色、味など、人の五感による判定が重要な役割を果たしている。醤油も 目視で色を判定しており、個人による比色のばらつきが課題となっている。本研究では、測 定装置を作製し、画像処理及びAI技術を用いて色番号を出力する支援システムを開発した。 色彩計及び目視との比較評価を実施し、AI方式は色彩計に近似する色番号を判定できることを確認した。

Key words: 醤油、色番号、AI、画像処理、支援システム

1. 緒言

近年の技術進展に伴い、生産現場の検査方法は自動化やAI技術の導入が進んでいる。これにより、品質検査の速度及び精度が向上しているものの、依然として人の五感に依存した正常・異常の判定が、多く残されている。特に、食品製造業では香りや色、味などの感覚的判定(官能評価)が重要な役割を果たしている。

醤油は種類や等級を色で判定する項目¹⁾ がある。この色は番号で規定されており、色番号と呼ばれ、色が濃いほど値が小さく、淡いほど大きくなる。色番号を求めるには、しょうゆ標準色²⁾ と比色して判定することと日本農林規格(JAS 規格)によって規定¹⁾ されている。しかし、目視による判定のため、判定員の経験や体調に大きく左右し、周辺環境の影響も含め、個人差やばらつきが生じてしまう課題がある。

そこで、これらの課題を解決するために、色番号の 判定支援を行うシステムを開発する。本システムによ り、人間の感覚に依存しない客観的な評価が可能とな り、課題であるばらつきを減少させることができる。 更に、熟練した判定員の不足による影響を軽減し、検 査プロセスの効率化と品質向上が期待される。

本報告書では、測定装置の製作及び支援システムの各手法と、その評価について報告する。

2. 開発

2. 1. 装置の開発

本開発では、醤油の色番号を判定するための測定装置を開発した。試験に入った醤油を照明で照らし、カメラで映像を取得する。装置は光環境と持ち運びを考え、大きさが約W:165[mm]、D:105[mm]、H:110[mm]の、黒いポリプロピレンのボックスを使用した。主な部材は表1のとおり。装置内部を図1に示す。左端にカメラを固定し、およそ700[mm]先に醤油用の治具、アクリル板、照明の順で配置した。

醤油用の治具は直方体になっており、中央に穴が開

いているため、上から試験管を差し込むことができる。 また、カメラ側と照明側に窓が作られており、後ろに は、乳白半透明のアクリル板がついている。

表 1 使用部材

メーカー	名称・型番		
HiKOKI	マルチツール用アクセサリーケース		
ELP	ELP-USB500W02M-AF30		
Optos supply	OSW4YK3Z72A		

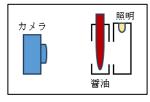


図1 装置内部及び横から見た構成図

照明は LED を使用し、USB micro-B で給電が可能である。商用電源から AC/DC スイッチング電源を介して、DC5[V]を供給する。また、LED だけでは光がボックス内に散乱してしまうため、中が空洞の直方体の白い治具を作製した。LED の基板をこの治具の上部に取り付けることで、中で光が拡散反射して、カメラ方向に設けられた窓より光が出る仕組みになっている。図2に治具を示す。左が醤油用で右が照明用である。治具2つは、3Dプリンタを用いて作製した。

図2 治具

事業名「そだてる研究室事業」

2. 2. 画像処理方式による色番号の取得

2. 2. 1. 構築システム

カメラで撮影している映像をもとに、画像処理で色番号を求めるpython³⁾プログラムを作成した。操作性を高めるため、Tkinter⁴⁾を用いてGUIアプリケーションとして実装した。判定画面を図3に示す。カメラから取得した映像の中央領域の色情報を解析し、色番号を動的に表示させることができる。ウィンドウ右にはL*a*b*の値と、色番号が表示される。左上にはカメラ映像が、左下には画像を保存できるボタンと、ウィンドウを閉じるボタンが備わっている。

図3 アプリケーション画面

カラーモードの選定において、「しょうゆの日本農林 規格」では、色の判定に CIE1976L*a*b*色空間 $^{5)}$ が引用されており $^{1)}$ 、本画像処理システムにおいても、この色空間を採用した。また、明るさで判断するようにとの標準色付属説明書の記載に従い、明度 L*のみを用いる。まず、 0 0penCV $^{6)}$ でカメラから取得した画像中央領域 9 ×9 ピクセルの 9 RGB 値を平均し、 9 skimage ライブラリの 9 rgb2lab 関数 $^{7)}$ を用いて 9 CIEL*a*b*色空間へ変換した。この変換された明度 L*より番号を算出し、アプリケーションに表示する構成とした。

2. 2. 2. 判定結果

標準色を測定した結果を図4に示す。なお、標準色は偶数番のみ存在し、奇数番及び58番、60番は欠番となっている。

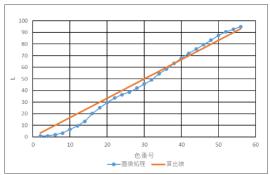


図4 画像処理方式による色番号判定結果

橙色の直線は、色番号算出式から計算した想定明度である。14番以下は最大で10以上想定明度線と離れており、色番号にして6異なっていた。精度にすると77.7 [%] だった。

そこで、判定結果を想定明度線に近似させるため、図3で得られた明度 L*と、想定明度の差を利用して補正を行った。再度標準色を測定した結果を図5に示す。想定明度との差は、大きいところで2.25、精度も97.8[%]と向上させることができた。

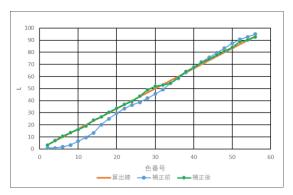


図5 補正後の明度 L

2. 2. 3. 考察

14番以下の差が大きくなった理由としては、明度の 飽和が発生しないよう、照明の光量を少なく調整した ことが影響していると考えられる。淡い醤油では光を 透過しやすいため、想定との差が最大4と小さかった ものの、濃い醤油では光を透過しにくくなり、差が大 きくなってしまったと考えられる。

2. 3. AI 方式による色番号の取得

2. 3. 1. 構築システム

判定には Yolov11⁸⁾ を用いた。はじめに、測定装置 内で標準色を撮影し、labelImg⁹⁾ を使用してアノテー ションを行うことで、醤油用の学習データセットを作 製した。

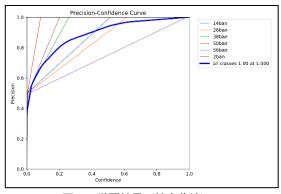


図6 学習結果(精度曲線)

モデルは事前にトレーニングされている YOLO11n で実施した。学習を行い、精度曲線の結果が良好だったモデルを重みファイルとした。精度の結果を図6に示す。

実際の判定画面を図7に示す。OpenCVでカメラ映像を取得し、学習させた重みを使って、リアルタイムで推論した。判定場所にはバウンディングボックスと色番号が表示される。

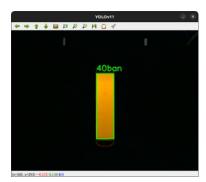


図7 判定画面

2. 3. 2. 判定結果

判定結果を図8に示す。標準色の欠番である奇数番及び58番、60番については、学習データが存在しないため、判定されない。また、2番、18番、20番、22番については判定されなかった。判定できなかった番号を除くと、精度は95.4[%]だった。

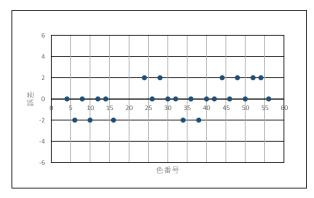


図8 AI 方式による色番号判定結果

2. 3. 3. 考察

判定されなかった2番については、画像処理と同じ 照明で光が醤油をほとんど透過しなかったため、判定 できなかったと考えられる。18番、20番、22番 は学習データが存在するものの判定されず、判定条件 を変更しても同様だった。ただ、ほかの番号について は問題なく判定されていることから、学習データ量を 増やし、エポック数の増加、モデルの変更や学習・推 論時のハイパーパラメータの調整などによって、判定 できると考える。

3. 有効性の検証

3. 1. 比較手法

画像処理方式と AI 方式の有効性を確認するため、色彩計と目視の2つの手法と比較した。 色彩計は会津若松技術支援センターが所有している、日本電色株式会社製の ZE7700 を使用し、透過にて測定した。

図9 色彩計 ZE7700

また、目視は、福島県醤油醸造協同組合に赴いて、 標準色を使用した判定方法を教授いただき、当職員が 行った。

3. 2. 結果

市販されている醤油を5種類用意し、判定を行った。 結果を表2に示す。なお、色彩計は、測定した明度L*から色番号を算出した100。

表 2 色番号比較						
	色彩計	目視	ΑI	画像処理		
醤油①	53	52	52	49		
醤油②	36	39	36	31		
醤油③	16	19	10	13		
醤油④	32	38	32	25		
醤油⑤	9	11	8	6		

表2 色番号比較

3. 3. 考察

色彩計及び目視と比較して、ともに AI 方式の方が近い色番号を示した。目視は個人差が出るため、今回は色彩計で求められた色番号を正と仮定して差を求め、平均絶対パーセント誤差を算出した。目視が 14.0 [%]、AI 方式が 11.1 [%]、画像処理方式が 19.1 [%]と、一番近似しているのは AI 方式であった。醤油③を除いて、前後 1 番内を判定している。③の誤差が大きいのは、2.3.3.において考察したとおり、学習データ量等が影響している可能性がある。

また、画像処理方式はすべて一致しなかった。L*はあくまでも計算値であり、測定値ではない。そのため、近づけるには、さらに補正を加える必要がある。ガンマ補正にコードで掛け外し処理を入れることや、グレ

ースケール化による補正などが考えられる。

今回は着手まで届かなかったが、AI 方式においては、 欠番を学習させることができれば、奇数番等について も判定が可能となる。市販の醤油を使用して、都度測 色計で調整しながら作製することとなり、膨大な時間 がかかるが、その分、色相や彩度が異なる学習データ を増やすことができ、大幅な精度向上を見込めるため、 メリットは大きいと考える。

4. 結言

醤油の色番号を判定する装置を作製し、画像処理方式及びAI方式での判定システムの構築を行った。それら手法と、色彩計及び人による目視判定を比較評価し、AI方式は色彩計で算出した色番号と近似する結果を示した。これにより、目視判定を支援し、安定した色番号の判定を行うことが可能となった。今後は、さらなる精度向上を目指して、検証・評価をしていく予定である。

謝辞

目視による判定手法をご教授くださいました、福島県 醤油醸造組合の理事兼工場長、紅林孝幸氏に深謝いた します。

参考文献

- 1) JAS1703 (しょうゆ). 農林水産省. 2021,p1-12.
- 2) "しょうゆ標準色". 一般社団法人日本醤油技術センター. https://www.shoyu.or.jp/, (参照 2025-02-25).
- 3) "Welcom to python.org". python. https://www.python.org/, (参照 2025-2-26).
- 4) "tkinter Python interface to Tcl/Tk".pytho n. https://docs.python.org/3/library/tkinter.htm l, (2025-02-26).
- 5) JIS Z 8781-4 (測色-第4部: CIE 1976 L*a*b *色空間). 日本規格協会. 2022, p416-431.
- 6) "OpenCV Open Computer Vision Library". OpenCV. https://opencv.org/, (参照 2025-02-25).
- 7) "skimage.color". Scikit-image, https://scikit-image.org/docs/stable/api/skimage.color.html, (参照 2025-2-17).
- 8) Ultralytics. "Ultralytics YOLO11". Github. 20 24. https://github.com/ultralytics/ultralytics, (参照 2025-2-17).
- 9) HumanSignal. "labelImg". Github. https://github.com/HumanSignal/labelImg, (参照 2025-02-25).
- 10) "測色値による等級の推定". COLOR No167.日本色彩研究所. https://www.jcri.jp/square/journa

1/, (参照 2025-2-17).