# 原子力発電所周辺環境放射能測定結果

(令和5年度 第3四半期)

福島県

# 目次

| 第 1 測定結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 第2 測定項目・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                             | 13                                                                     |
| 第3 測定方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                             | 19                                                                     |
| 第4 測定結果         4-1 空間放射線         4-1-1 空間線量率         (1) ガンマ線・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                      | • • • • • • • • 28                                                     |
| 4-1-2 空間積算線量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                        | · · · · · · · · · · · 29 · · · · · · · · · · 30 · · · · · · · · · · 30 |
| 第5 原子力発電所周辺環境放射能測定値一覧表 5-1 空間放射線 5-1-1 空間線量率 (1) ガンマ線・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                               | 42 43 44 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48                  |
| 第6 参考資料 6-1 福島第一原子力発電所における地下水バイパス水等の海域への排出に海水モニタリング結果(公表資料)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                         | 97                                                                     |
| 第7 グラフ集・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                             |                                                                        |
| 必要に応じて、福島県原子力安全対策課のホームページに掲載している原子だい。<br>○URL<br>http://www.pref.fukushima.lg.jp/sec/16025c/genan183.html<br>○または、<br>福島県原子力安全対策課トップページ → 参考資料 → 原子力用語集 |                                                                        |

# 第1測定結果の概要

福島県では、国において ALPS 処理水の海洋放出を令和5年8月24日に開始することが示されたことから、海洋放出による海水のトリチウム濃度等の変化を確認するため、「令和5年度福島県原子力発電所周辺環境放射能等測定計画書」を改定し、モニタリングを強化しました。福島県が、本計画書に基づき令和5年度第3四半期(令和5年10月~令和5年12月)に実施した原子力発電所周辺の環境放射能測定結果は以下に示すとおりです。東京電力㈱福島第一原子力発電所の事故による影響により、空間線量率については事故前の測定値の範囲を上回り、環境試料については一部を除いて事故前の測定値の範囲を上回っています。しかし、これらは、年月の経過とともに減少する傾向にありました。

# 1 空間放射線

- 空間線量率(ガンマ線)について、今期の測定値(月間平均値  $0.042\sim3.630~\mu$  Gy/h)は、事故前の測定値(月間平均値  $0.033\sim0.054~\mu$  Gy/h)を上回っていますが、年月の経過とともに減少する傾向にありました。
- 空間線量率(中性子線)について、今期の測定値(月間平均値3~4 nSv/h)は、事故前の県内の 測定結果\*\*1と同程度\*\*であり、中性子線量率の異常は確認されませんでした。
- 空間積算線量 (90 日換算値) については、今期の測定値 (0.15~9.6 mGy) は、事故前の測定値 (0.10~0.14 mGy) を上回っていますが、年月の経過とともに減少する傾向にありました。

#### 2 環境試料の核種濃度

○ 降下物、土壌、海水、海底土及び松葉の5品目の試料からセシウム-134及びセシウム-137が検出され、大気浮遊じん及び上水の試料からはセシウム-137が検出されました。事故の影響により多くの試料で事故前の測定値を上回りましたが、事故直後と比較すると大幅に低下しており、令和2年度から前四半期までの測定値(以下「令和2年度以降」という。)とほぼ同程度でした。

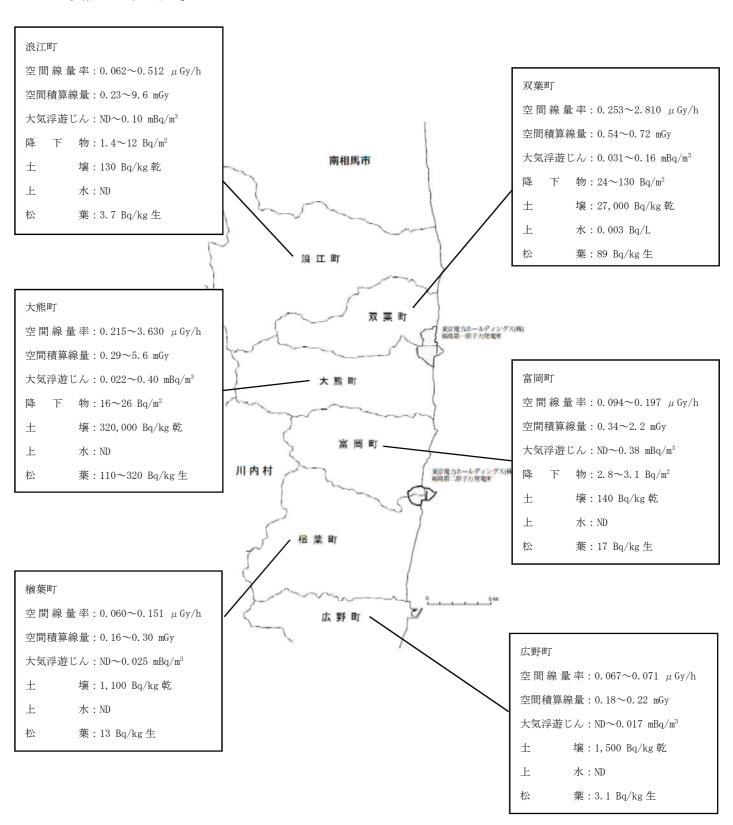
上水の一部(水源は表流水)からセシウム-137 が検出  $(0.003\sim0.034~Bq/L)$  されています。この値は、食品中の放射性セシウムの基準値のうち、飲料水の基準値 $^*$ である 10~Bq/kg (10~Bq/L) を大きく下回っています。

- 海水の全ベータ放射能を調査した結果、事故前の測定値(ND~0.05 Bq/L)と同程度\*でした。
- 大気中水分、上水及び海水の試料からトリチウムが検出されました。大気中水分、上水及び海水のトリチウムの測定値は、事故前の測定値(大気中水分: ND~23 mBq/m³、上水: ND~1.3 Bq/L、海水: ND~2.9 Bq/L) と同程度\*でした。

ALPS 処理水の海洋放出後に実施した速報のためのトリチウムの迅速分析の結果は、全て検出下限値未満でした。

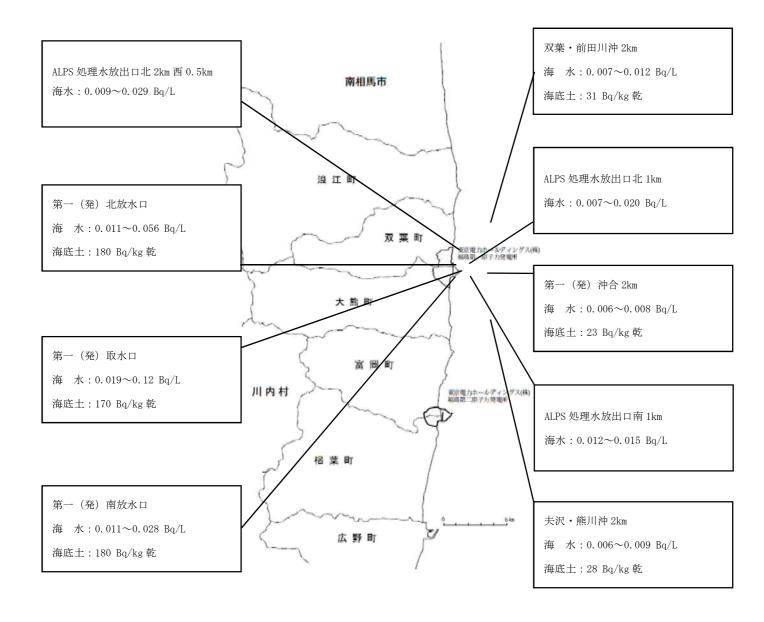
○ 海水の試料からストロンチウム-90 が検出されました。海水のストロンチウム-90 の測定値は、 事故前の測定値 (ND~0.002 Bq/L) を上回りましたが、令和 2 年度以降の測定値 (ND~0.035 Bq/L) と同程度\*でした。

- 海水及び海底土の試料からプルトニウム-239+240 が検出されました。海水及び海底土のプルトニウム-239+240 の測定値は、事故前の測定値(海水:ND~0.13 mBq/L、海底土:0.13~0.61 Bq/kg 乾)と同程度\*\*でした。
- ※1 環境における中性子線量率の測定結果 (平成 14 年度文部科学省実施): 4.6~14 nSv/h 県内 5 地点(福島市、猪苗代町、西会津町、いわき市)において、サーベイメータ型レムカウン タ (直径 2 インチ 5 気圧 ³He 比例計数管)を使用し、地表面より約 1m の高さで測定。

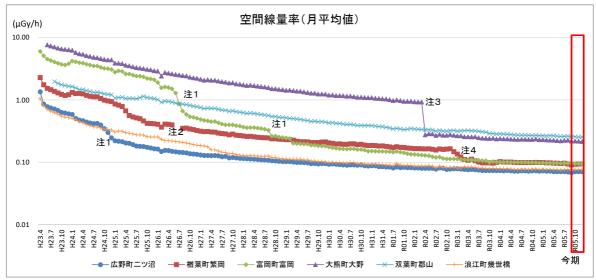

URL:https://www.kankyo-hoshano.go.jp/ (環境放射線データベース)

URL: https://www.kankyo-hoshano.go.jp/wp-content/themes/jcac/pdf/ers\_abs45.pdf (「第 45 回環境放射能調査研究成果論文抄録集(平成 14 年度)文部科学省」I-20 環境における中性子線量率の全国調査)

(注) ※については、用語の解説 (9~11ページ) を参照してください。

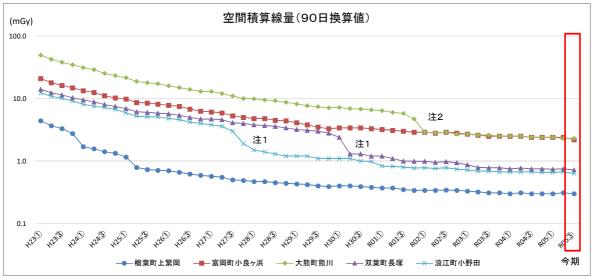

# 【町別の空間放射線及び環境試料のセシウム-137 濃度】

※ 詳細な地点は p. 14 図 2-1 環境放射能等測定地点及び p. 16 図 2-3 環境試料採取地点を参照してください。

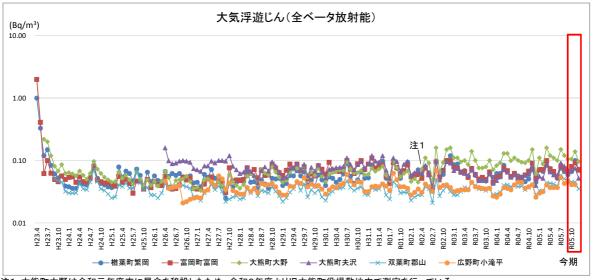



# 【福島第一原子力発電所沿岸海域の海水及び海底土のセシウム-137濃度】

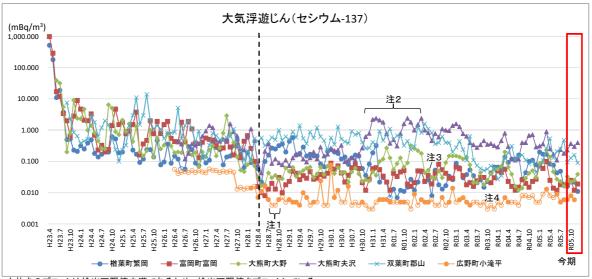
※ 詳細な地点は p.16 図 2 - 3 環境試料採取地点を参照してください。



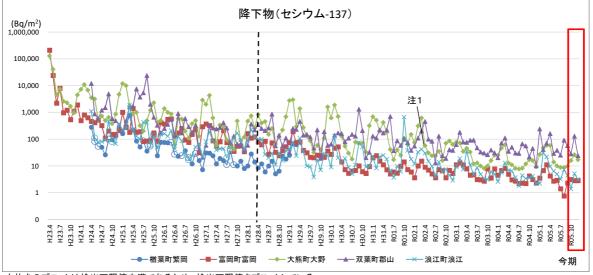

# 事故後の各項目毎のトレンドグラフ



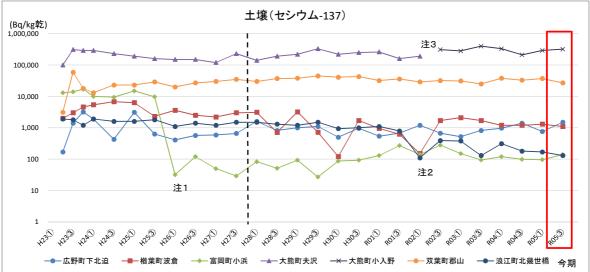

注1:除染による減少、注2:欠測 注3:大熊町大野は令和元年度末に局舎を移設したため、令和2年度より旧大熊町役場敷地内で測定を行っている。 注4:隣地において造成工事が行われたことによる低下



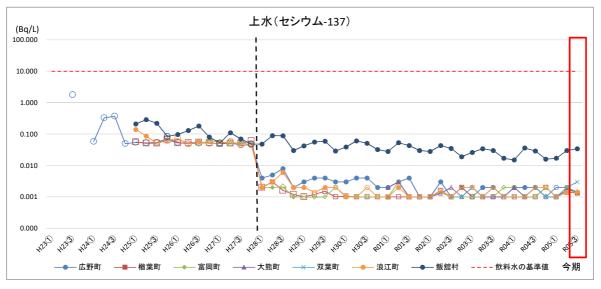




注1:除染による減少 注2:周辺において造成工事が行われたことによる低下

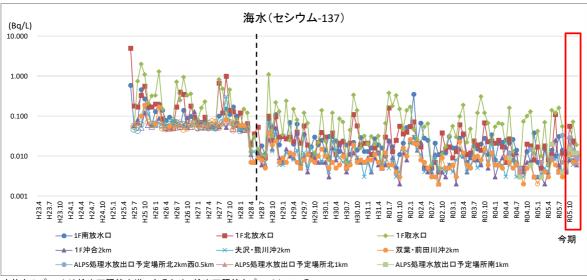



注1:大熊町大野は令和元年度末に局舎を移設したため、令和2年度より旧大熊町役場敷地内で測定を行っている。

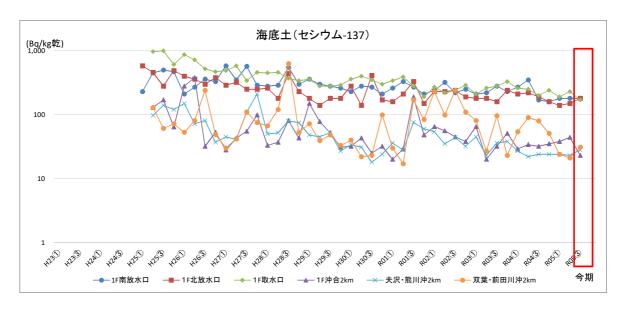


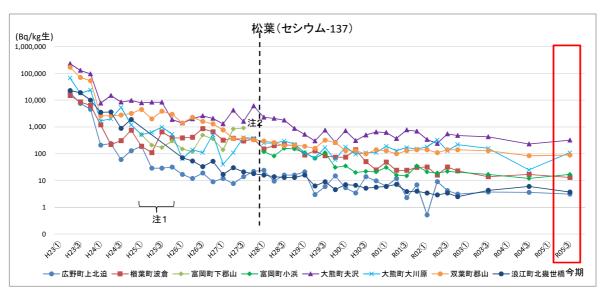

- ・白抜きのプロットは検出下限値未満であるため、検出下限値をプロットしている。
- ・事故後は緊急時の簡易法で分析しており検出下限値が高かったが、平成28年4月(点線)から分析方法を従来の方法に戻し、検出下限値が低下。 注1:富岡町富岡は機器不具合のため平成28年7月から10月は参考値
- 注2:大熊町夫沢が平成30年度及び令和元年度の秋期~冬期にかけてセシウム-137濃度が上昇した要因は、土木工事により局舎周辺が裸地化し、風によって微細な土壌粒子が浮遊しやすい環境となり、強風により浮遊した土壌粒子を捕集した影響と考えられる。
- 注3: 測定地点を、福島県旧原子力センターから大熊町旧役場庁舎に令和2年4月1日から変更した。
- 注4:富岡町富岡は令和3年10月6日に実施した屋上の防水塗装作業時、粉じんを吸引したと考えられるため、令和3年10月を欠測とした。




- \_ ・白抜きのプロットは検出下限値未満であるため、検出下限値をプロットしている。
- ・事故後は緊急時の簡易法で分析しており検出下限値が高かったが、平成28年4月(点線)から分析方法を従来の方法に戻し、検出下限値が低下。
- 注1:測定地点を、福島県旧原子カセンターから大熊町旧役場庁舎に令和2年4月1日から変更した。

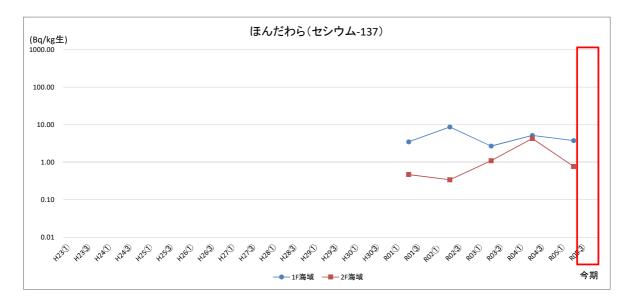



- ・事故後は緊急時の簡易法で分析しており検出下限値が高かったが、平成28年4月(点線)から分析方法を従来の方法に戻し、検出下限値が低下。 ・今期は測定対象外。
- 注1:除染による減少
- 注2: 浪江町北幾世橋は、従来の採取地が耕作により採取不可能になったため、同地点内で採取地を変更して除染終了後の土壌を採取した。
- 注3: 大熊町夫沢は中間貯蔵施設工事により採取不可能となったため、令和2年度第3四半期より大熊町八入野で試料採取を行っている。




- ・白抜きのプロットは検出下限値未満であるため、検出下限値をプロットしている。 ・事故後は緊急時の簡易法で分析しており検出下限値が高かったが、平成28年4月(点線)から分析方法を従来の方法に戻し、検出下限値が低下。




- ・白抜きのプロットは検出下限値未満であるため、検出下限値をプロットしている。 ・事故後は緊急時の簡易法で分析しており検出下限値が高かったが、平成28年4月(点線)から分析方法を従来の方法に戻し、検出下限値が低下。





・事故後は緊急時の簡易法で分析しており検出下限値が高かったが、平成28年4月(点線)から分析方法を従来の方法に戻し、検出下限値が低下。 注1: 浪江町北幾世橋は平成25年度は調査未実施 注2: 富岡町下郡山は平成27年度第4四半期以降試料採取が困難となったため、平成28年度より富岡町小浜で試料採取を行っている。





#### 用語の解説

#### 1 同程度

空間線量率の測定値は、測定装置の設置場所周辺の環境変化、測定機器の更新等により変動するため、それぞれの測定地点における測定値が同様の測定を実施しているとみなせる期間の値の範囲内であったとき又はその範囲を下回った場合において、測定器系のトラブルが認められない場合には、同程度とします。空間積算線量、環境試料も同様です。

#### 2 降雨雪による自然放射線レベルの変動

一般に降雨雪時には、空気中に舞い上がっているラドン\*1、トロン\*2及びその子孫核種並びに大気浮遊じん等に含まれる自然の放射性物質が、雨滴等に取り込まれ地表付近に降下し、降り始めの一時期に空間線量率が上昇します。また、降雨雪が多くなると地表の水分による放射線の吸収作用により、大地からの放射線が遮へいされ、空間線量率が低下することがあります。

福島県においては、福島第一原子力発電所事故の影響により、およそ300nGy/h以下の地域では、自然の放射性物質が地表付近に降下するため、一時的に空間線量率が上昇しますが、300nGy/hを超える地域では、自然の放射性物質による上昇に比べ、降雨雪による遮へい効果が大きいため、一時的に低下する傾向が見られます。

- ※1 ラドン 大地に由来するウラン-238 から始まる壊変 (ウラン系列) で生成された ラジウム-226 が壊変した放射性の希ガス (ラドン-222) です。
- ※2 トロン 大地に由来するトリウム-232 から始まる壊変 (トリウム系列) で生成されたラジウム-224 が壊変した放射性の希ガス (ラドン-220) です。

# 3 ガンマ線放出核種

原子力発電所からの影響を評価するため、環境試料に含まれるクロム-51、マンガン-54、コバルト-58、鉄-59、コバルト-60、ジルコニウム-95、ニオブ-95、ルテニウム-106<sup>※3</sup>、アンチモン-125、セシウム-134、セシウム-137<sup>※4</sup> 及びセリウム-144 等の核種について、放出されるガンマ線を測定し、定量しています。また、松葉、ほんだわらについては、これらに加えてヨウ素-131 も対象としています。

- ※3 ルテニウム-106 は純ベータ核種であるため、子孫核種であるロジウム-106 のガンマ線を測定し、定量しています。
- ※4 セシウム-137 は純ベータ核種であるため、子孫核種であるバリウム-137m のガンマ線を測定し、定量しています。

#### 4 ベータ線放出核種

環境試料に含まれるベータ線を放出する核種のうち、原子力発電所からの影響を評価するため、トリチウム及びストロンチウム-90 を測定対象としています。

#### 5 アルファ線放出核種

環境試料に含まれるアルファ線を放出する核種のうち、原子力発電所からの影響を評価するため、プルトニウム-238、プルトニウム-239+240を測定対象としています。また、土壌については、これらに加えてウラン-234、ウラン-235、ウラン-238、アメリシウム-241、キュリウム-244も対象としています。

#### 6 原子力発電所等に由来する影響

環境試料の核種濃度については、昭和55年以前に行われた中国の大気圏核実験の影響により、セシウム-137の放射能レベルの上昇が松葉などに見られるとともに、ほうれんそうなどの試料からジルコニウム-95、ニオブ-95、セシウム-137、セリウム-144などが検出されました。

その後、中国の大気圏核実験の停止に伴い、全体的に環境試料の放射能レベルは減少していましたが、現在に至っても、半減期の長いセシウム-137、ストロンチウム-90、プルトニウムが全国的に微量ながら検出されています。

昭和61年に起きた旧ソ連チェルノブイリ原子力発電所の事故により、県内でもヨウ素-131、セシウム-134、セシウム-137などが一時的に検出されましたが、現在ではその影響は極めて小さなものとなっています。

福島第一原子力発電所の事故の影響により、現在は多くの試料からセシウム-134、セシウム 137 などが検出されています。また、土壌などの試料からはコバルト-60、アンチモン-125 も検出されています。空間線量率の上昇が確認された場合は、これまでの空間線量率の推移、原子力施設の測定値等の異常、気象、自然放射性核種等の影響、測定器等の異常、外部要因の影響の有無を確認し、原子力発電所等に由来する影響の有無を判断しています。

#### 7 大気浮遊じんの全アルファ放射能及び全ベータ放射能の相関関係

通常、一般環境の大気浮遊じんの全アルファ・全ベータ放射能濃度は、大気が安定し、 風が弱いときは高い傾向を示し、降雨雪時や強風の時は低い、というように変動していま すが、自然界のラドン、トロン濃度を反映し、一定の相関をもっていることが知られてい ます。これに対して、人工の放射性物質を含む浮遊じんが降下すると、この相関から外れ ます。

これまで、中国の核実験や旧ソ連チェルノブイリ原子力発電所事故、福島第一原子力発電所事故の事故直後の際には、浮遊じん中の全ベータ放射能が高くなり、この相関から大きくずれた事例が見られました。

#### 8 確認開始設定値

大気浮遊じんの全アルファ放射能及び全ベータ放射能の測定において、測定値が上昇 した場合、その測定値に施設寄与があったかどうかを判断する(施設寄与があった可能性 を否定できないと判断した場合を含む)ために、要因調査を開始するための設定値です。

ラドン・トロン壊変生成物の影響により、全アルファ放射能及び全ベータ放射能の経時的な変動は大きいですが、両者の比である $\beta/\alpha$ 比(全ベータ放射能を全アルファ放射能で除した比)はほぼ一定になります。

それを利用して、県では各測定地点における前月の全アルファ放射能及び全ベータ放射能の 10 分値をもとに  $\beta/\alpha$  比の平均値を算出し、  $\beta/\alpha$  比の平均値+ (10×標準偏差)を確認開始設定値としています。

#### 9 検出下限値

放射能測定において、検出可能な最小の量又は濃度をいいます。測定値が検出下限値以上であれば、その数値は十分に信頼性があるものとされます。

検出下限値は測定試料の種類や量、測定条件の違い等により、測定ごとに変動します。 同じ種類の複数の試料で測定値が検出下限値未満であった場合でも、それぞれの試料 の検出下限値は異なるため、本報告書においては、これらを一律に「ND」(Not Detected の略)と表記しています。「ND~(数値)」は、測定結果に検出下限値未満のものと検出 下限値以上のものが存在することを表しています。この場合、右側の数値は「検出下限値 以上の数値の最大値」を表しています。

## 10 飲料水の基準値

「WHO飲料水水質ガイドライン」で定められている飲料水中の放射性核種のガイダンスレベルのことで、セシウム-134、セシウム-137 ともに10Bq/Lと定められています。

#### 11 降下物

雨水及びちりを捕集し、その中に含まれる放射性物質を調査しています。これまで、過去に行われていた大気圏内での核爆発実験の影響、チェルノブイリ原子力発電所の事故、福島第一原子力発電所の事故の影響により核分裂生成物が確認されています。

# 12 大気浮遊じん

原子力発電所から放出される粒子状の放射性物質を把握するため、大気中に浮遊する じん埃(ほこり)を捕集し、その放射能を測定しています。福島第一原子力発電所の事故 の影響により、セシウム-134、セシウム-137が検出されています。

# 13 土壌

原子力発電所から放出された放射性物質の蓄積状況を把握するため、土壌を採取し、その放射能を測定しています。福島第一原子力発電所の事故の影響により、コバルト-60、ストロンチウム-90、アンチモン-125、セシウム-134、セシウム-137、プルトニウム-238、プルトニウム-239+240、アメリシウム-241、キュリウム-244 が検出されています。

# 14 指標生物

環境中の微量元素の濃縮効果が期待でき、かつ、その地域で容易に採取できる生物であって、その放射能監視を行うことが簡便かつ有効である生物をいいます。陸上では松葉、海洋ではほんだわらがあります。

# 第2 測定項目

# 令和5年度第3四半期(令和5年10月~令和5年12月)測定分

#### 1 測定項目

### (1)空間放射線

| 項目             | 計画地点数 | 調査地点数 (今期) | 測定頻度      | 実 施 機 関   |
|----------------|-------|------------|-----------|-----------|
| 空 間 線 量 率 (*1) | 39    | 39         | 連続        | 環境創造センター  |
| 空間積算線量         | 64    | 64         | 3 ヵ 月 積 算 | 現児利垣 ピンクー |

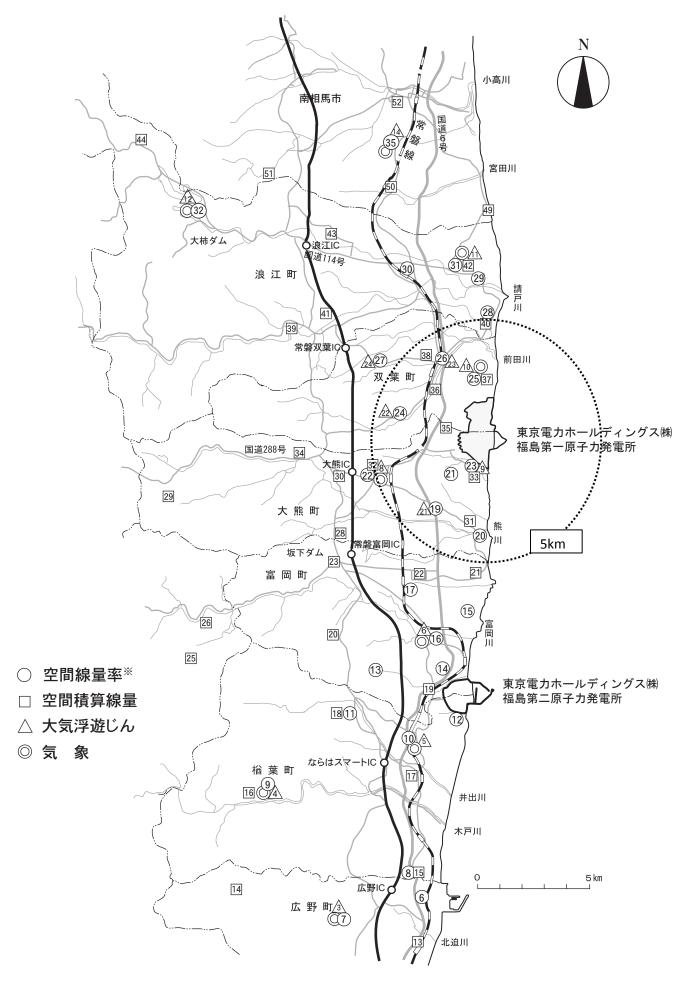
<sup>\*1</sup> 中性子線3地点含む

#### (2)環境試料

| \ <b>-</b> / | <b>垛児趴</b> 不 | _    |              |          |                            |                                   |                       |                                 |                    |     |           |                |    |   |    |       |           |
|--------------|--------------|------|--------------|----------|----------------------------|-----------------------------------|-----------------------|---------------------------------|--------------------|-----|-----------|----------------|----|---|----|-------|-----------|
| 区            | 分            |      | 試 料 名        | Ī        | 計画地点数                      | 調査地点数                             | 採取回数                  | 採取頻度                            |                    |     |           | 主試 料           |    |   |    |       | 実施機関      |
|              | - 23         | L    | FY 17 74     |          | HI PHELINISA               | (今期)                              | (今期)                  | DN-1/-59().X                    | 全β                 | γ   | $^{131}I$ | <sup>3</sup> H | Sr | U | Pu | Am,Cm | 人,//四次(天) |
|              |              |      |              |          | 17                         | 17                                | 3                     |                                 | 連続<br>全α全β<br>(*2) | 48  |           |                |    |   |    |       |           |
| 大            | 気            |      | 大気浮遊じん       | ん        | 9                          | 9                                 | 3                     | 毎月                              | 連続<br>全α全β<br>(*3) | 27  |           |                |    |   |    |       |           |
| A X          |              |      |              |          | 16                         | 16                                | 3                     |                                 |                    | 48  |           |                |    |   |    |       |           |
|              |              |      | 大気中水分        | }        | 5                          | 5                                 | 3                     | 毎月                              |                    |     |           | 15             |    |   |    |       |           |
| 降            | 下 物          | ) 陷  | ≨ 下          | 物        | 10                         | 10                                | 3                     | 毎月                              |                    | 30  |           |                |    |   |    |       |           |
| 土            | 4505         | £ ±  |              | 壌        | 15                         | 15                                | 1                     | 年2回                             |                    | 15  |           |                |    |   |    |       |           |
| т.           | 块            | \$ I | -            | 壊        | 15                         | 15                                | 1                     | 年1回                             |                    |     |           |                | 0  | 0 | 0  | 0     |           |
| 陸            | <b>→</b>     | : 上  |              | 水        | 13                         | 19                                | 1                     | 年4回                             |                    | 13  |           | 13             |    |   |    |       |           |
| 连            | 八            |      | -            | 八        | 13                         | 13                                | 13 1                  | 年1回                             |                    |     |           |                | 13 |   | 13 |       | 環境創造      |
|              |              |      |              |          | 9 (*4)                     | 9(*4)                             | 3                     | 毎月                              | 27                 | 27  |           | 27 (*7)        | 27 |   | 27 |       | センター      |
| 海            | <b>→</b>     | · \\ | <del>-</del> | <b>→</b> | 9(*4)                      | 9(*4)                             | 12                    | -                               |                    |     |           | 108 (*8)       |    |   |    |       |           |
| 伊            | 八            | 111  | Ŧ            | 小        | 2 (45)                     | 2(*5)                             | 1                     | 年4回                             | 2                  | 2   |           | 2 (*6)         |    |   |    |       |           |
|              |              |      |              |          | 2 (*3)                     | 0                                 | 0                     | 年1回                             |                    |     |           |                | 0  |   | 0  |       |           |
|              |              |      |              |          | 6 (*4)                     | 6 (*4)                            | 1                     | 年4回                             |                    | 6   |           |                | 6  |   | 6  | _     |           |
| 海            | 底 土          | : 油  | 底            | 土        | 2 (45)                     | 2(*5)                             | 1                     | 年4回                             |                    | 2   |           |                |    |   |    |       |           |
|              |              |      |              |          | Z (*5)                     | 0                                 | 0                     | 年1回                             |                    |     |           |                | 0  |   | 0  |       |           |
| 指 標          | 植物           | 杉    | 7            | 葉        | 15                         | 15                                | 1                     | 年1回                             |                    | 15  | 15        |                |    |   |    |       |           |
| 指標准          | 毎洋生物         | ) (3 | ほんだわ         | Ġ        | 2                          | 0                                 | 0                     | 年1回                             |                    | 0   | 0         |                | 0  |   | 0  |       |           |
| 指標           | 底 土          | 7 松  | <b>基</b>     | 葉        | 2 (*5)<br>6 (*4)<br>2 (*5) | 2(*5)<br>0<br>6(*4)<br>2(*5)<br>0 | 1<br>0<br>1<br>1<br>0 | 年4回<br>年1回<br>年4回<br>年4回<br>年1回 | 2                  | 6 2 |           | ` '            | 6  |   | 6  |       |           |

- \*2 連続ダストモニタによる測定
- \*3 リアルタイムダストモニタによる測定
- \*4 東京電力ホールディングス (株) 福島第一原子力発電所周辺海域
- \*5 東京電力ホールディングス (株) 福島第二原子力発電所周辺海域
- \*6 減圧蒸留法による測定
- \*7 電解濃縮法による測定
- \*8 連報のための迅速分析

#### 2 測定項目(比較対照地点調査)


#### (1)空間放射線

| (1) | 工间加       | (A) Wh |   |   |       |               |          |     |         |  |  |
|-----|-----------|--------|---|---|-------|---------------|----------|-----|---------|--|--|
|     | 項         | į į    | 1 |   | 計画地点数 | 調査地点数<br>(今期) | 測定       | 類 度 | 実 施 機 関 |  |  |
| 空   | 空 間 線 量 率 |        | 3 | 3 | 連     | 続             | 環境創造センター |     |         |  |  |

#### (2)環境試料

| Г | 区分 | 分  | -  | 試 料 名    | 計画地点数 | 調査地点数 | 採取回数 | 採取頻度   |    |    | 測定        | 三試 料           | 数 (4 | <b>}期)</b> |    |       | 実施機関 |
|---|----|----|----|----------|-------|-------|------|--------|----|----|-----------|----------------|------|------------|----|-------|------|
|   |    | ·u |    | PV 17 70 | 可凹地尽效 | (今期)  | (今期) | 1木以列/文 | 全β | γ  | $^{131}I$ | <sup>3</sup> H | Sr   | U          | Pu | Am,Cm | 大心区内 |
| 大 |    | 気  | 大: | 気浮 遊じん   | 7     | 7     | 3    | 毎月     |    | 21 |           |                |      |            |    |       |      |
|   |    |    | 大  | 気 中 水 分  | 1     | 1     | 3    | 14571  |    |    |           | 3              |      |            |    |       |      |
| 降 | 下  | 物  | 降  | 下 物      | 2     | 2     | 3    | 毎月     |    | 6  |           |                |      |            |    |       |      |
| 土 |    | 壌  | 4  | 壌        | 7     | 0     | 0    | 年1回    |    | 0  |           |                | 0    |            | 0  |       |      |
| ľ |    | 壊  |    | 塔        | 1     | 0     | 0    | 十四     |    |    |           |                |      | 0          |    | 0     | 環境創造 |
| 陸 |    | 水  | L  | 水        | 2     | 0     | 0    | 年1回    |    | 2  |           | 2              |      |            |    |       | センター |
| 胚 |    | 小  | 上  | 小        | 1     | 0     | 0    | 十四     |    |    |           |                | 1    |            | 1  |       |      |
| 海 |    | 水  | 海  | 水        | 1     | 0     | 0    | 年1回    | 0  | 0  |           | 0              | 0    |            | 0  |       |      |
| 海 | 底  | 土  | 海  | 底 土      | 1     | 0     | 0    | 年1回    |    | 0  |           |                | 0    |            | 0  |       |      |
| 指 | 標植 | 物  | 松  | 葉        | 5     | 5     | 1    | 年1回    |    | 5  | 5         |                | ·    |            |    |       |      |

図2-1 環境放射能等測定地点(福島第一・第二原子力発電所周辺)



※ ②、③は中性子線含む。

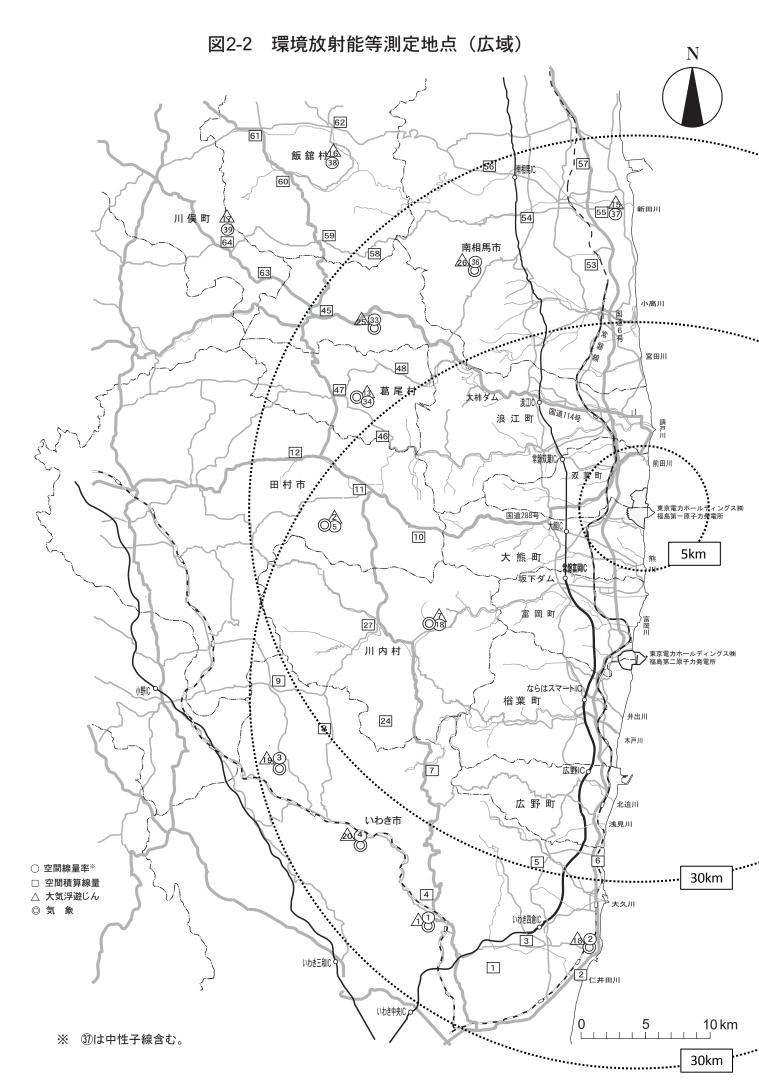



図2-3 環境試料採取地点(福島第一・第二原子力発電所周辺)

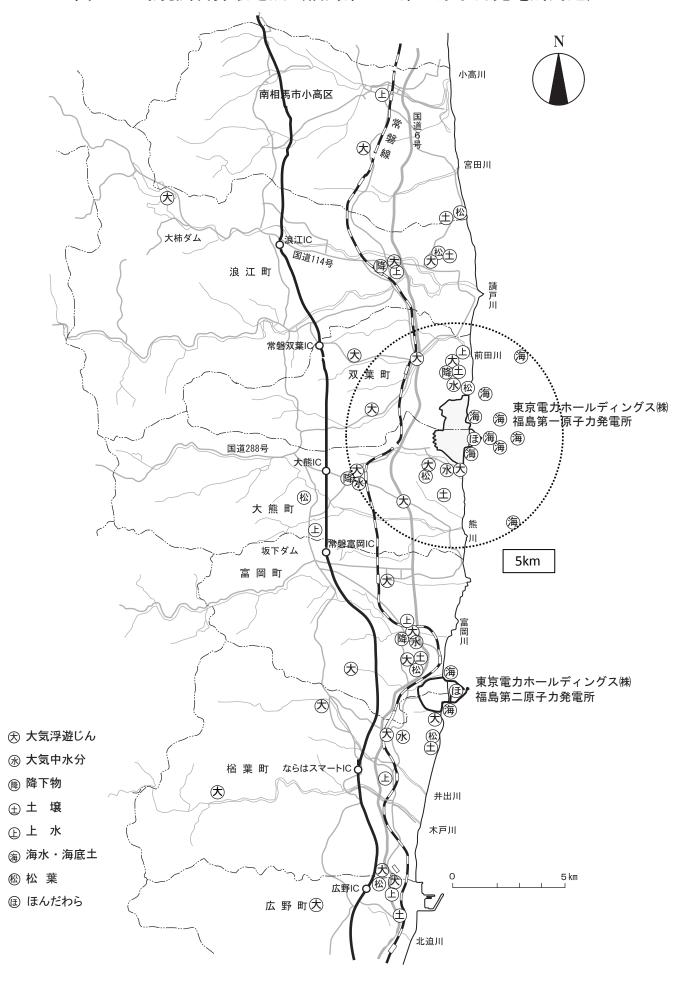
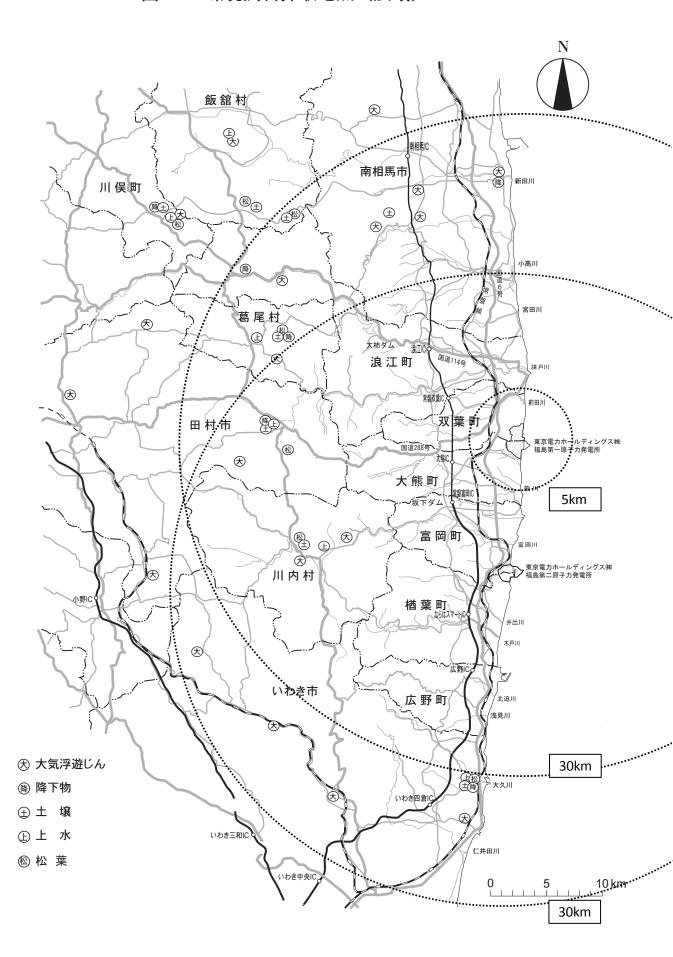
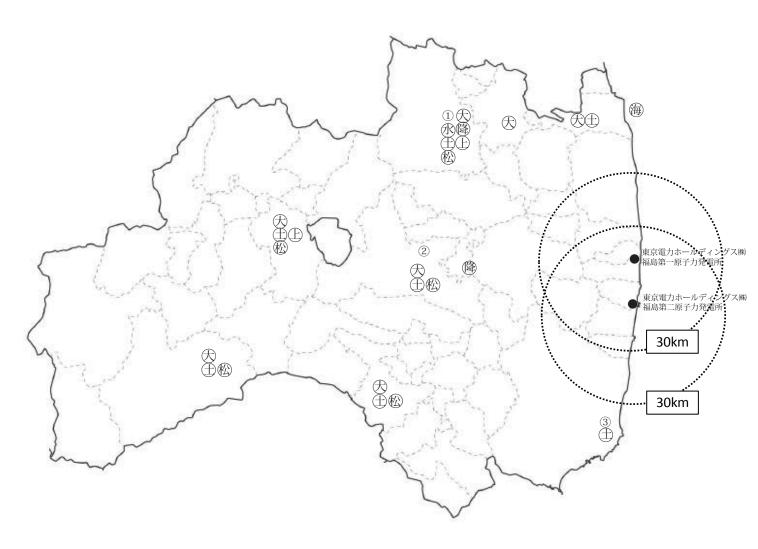





図2-4 環境試料採取地点(広域)



# 図2-5 環境放射能等測定地点及び環境試料採取地点(県内全域)



- 空間線量率
- 大気浮遊じん水気中水分
- @ 降下物
- ① 土壌 海 海水・海底土
- ① 上水
- 秘 松葉

# 第 3 測 定 方 法

# 1 空間放射線

| 測定項目   | 測 定 装 置     | 測 定 方 法                                                                                                                                                                                                                                             |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 空間線量率  | モニタリングポスト   | 測 定 法:原子力規制委員会編「連続モニタによる環境γ線測定法」(平成29年改訂)<br>検 出 器:低線量計 2″φ×2″NaI(T1)シンチレーション検出器または半導体検出器(日立製作所製 ADP-1122型他)高線量計 14Lアルミ製加圧型球形電離箱検出器(日立製作所製 RIC-348型他)中性子線量計 ³He比例計数管検出器測定位置:地表上約3m、約1m校正線源: <sup>69</sup> Co、 <sup>137</sup> Cs及び <sup>226</sup> Ra |
| 空間積算線量 | 蛍光ガラス線量計測装置 | 測 定 法:文部科学省編「蛍光ガラス線量計を用いた環境γ線量<br>測定法」(平成14年制定)<br>線 量 計:蛍光ガラス線量計 (AGCテクノグラス製 SC-1型)<br>測 定 器:AGCテクノグラス製 FGD-202型<br>測定位置:地表上約1m<br>校正線源: <sup>137</sup> Cs                                                                                         |

# 2 環境試料

(全α放射能、全β放射能、Cs-134、Cs-137濃度·H-3濃度·Sr-90濃度·U-234、U-235、U-238濃度·Pu-238、Pu-239+240濃度·Am-241、Cm-244濃度)

|      |                                                                 |                                                                                       |                                                                                                                                            | 大気浮遊じん                                                                                |                                                                                                                                            |                                                                                                                                            |
|------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 項目   | 試料名                                                             | 福島第一原子力発                                                                              | 電所から30km圏内<br>(トモニタ)                                                                                                                       | 福島第一原子力発<br>(リアルタイム                                                                   | 電所から30km圏内<br>ダストモニタ)                                                                                                                      | 福島第一原子力発電所から30km<br>圏内<br>(連続ダストサンプラー)                                                                                                     |
|      | 核種                                                              | 全アルファ放射能<br>全ペータ放射能                                                                   | Cs-134、Cs-137                                                                                                                              | 全アルファ放射能<br>全ペータ放射能                                                                   | Cs-134, Cs-137                                                                                                                             | Cs-134, Cs-137                                                                                                                             |
|      | 採取方法                                                            | ダストモニタによる連続<br>・採取位置:地表                                                               | 採取(ろ紙ステップ式)<br>上約3m、約2.3m                                                                                                                  | ダストモニタによる連続<br>・採取位置::                                                                | 「採取(ろ紙ステップ式)<br>地表上約2m                                                                                                                     | ダストサンプラーによる連続<br>採取<br>・採取位置:地表上約2m                                                                                                        |
|      | 採取容器等                                                           |                                                                                       | ろ糸                                                                                                                                         | 紙(アドバンテック東洋製 HE-4                                                                     | OT)                                                                                                                                        |                                                                                                                                            |
| 試料採取 | 採取量                                                             | 約11,(<br>(吸引量:約9                                                                      | 000m³<br>0m³/6時間)                                                                                                                          | 約2,2<br>(吸引量:約1                                                                       | 200m³<br>8m³/6時間)                                                                                                                          | 約2,000m <sup>3</sup>                                                                                                                       |
|      | 前処理<br>(酸などの薬品添加を実施しているか)<br>採取器具のコンタミ防止<br>(試料採取器具を適切に使用しているか) |                                                                                       |                                                                                                                                            | なし  就料毎に分けて採取している。                                                                    |                                                                                                                                            |                                                                                                                                            |
|      | 方法                                                              | なし                                                                                    | 1ヶ月分の集じんろ紙を電気<br>炉にて加熱分解し灰にする。                                                                                                             | なし                                                                                    | 1ヶ月分の集じんろ紙を電気<br>炉にて加熱分解し灰にする。                                                                                                             | 約1週間毎に回収した集じん<br>ろ紙の集じん箇所を打ち抜き<br>型を用いて打ち抜き、1ヶ月分<br>をU8容器に収納する。                                                                            |
| 前処理  | 分取、縮分の代表性<br>(高濃度試料分析の際<br>に、試料を分取して測定<br>している場合)               | なし                                                                                    | 灰にした試料全量をU8容器に<br>充填する。                                                                                                                    | なし                                                                                    | 灰にした試料全量をU8容器に<br>充填する。                                                                                                                    | 50 φ mmの円の中心から46 φ mmを打ち抜き84.64%を採取する。ろ紙には均一に採取されている。これを1ヶ月分まとめU8容器底面に収納する。                                                                |
|      | 前処理でのコンタミ防止<br>とその確認法                                           | なし                                                                                    | ・加熱分解に用いる磁性皿は、検体毎に洗浄及び空焼き(500°C)。<br>・充填する時に用いる器具類はボリエチレンフィルムで養生して使用。<br>・UB容器は新品を使用し、試料充塊後、2重に袋掛けをしている。                                   | なし                                                                                    | ・加熱分解に用いる磁性皿は、検体毎に洗浄及び空焼き(500°C)。<br>・充填する時に用いる器具類はボリエチレンフィルムで養生して使用。<br>・UB容器は新品を使用し、試料・<br>では、全量に装掛けをしている。                               | U8容器は新品を使用し、試料充填後、2重に袋掛けをしている。                                                                                                             |
|      | 測定法                                                             | 6時間連続集じん、6時間放置<br>後全アルファ及び全ベータ放<br>射能を6時間同時測定                                         | 原子力規制委員会編「ゲルマ<br>ニウム半導体検出器によるガンマ線スペクトロメトリー」(令<br>和2年9月改訂)                                                                                  | 全アルファ及び全ベータ放射<br>能を6時間連続集じん同時測<br>定                                                   |                                                                                                                                            | ニウム半導体検出器によるガ<br>一」(令和2年9月改訂)                                                                                                              |
|      | 測定装置                                                            | ダストモニタ                                                                                | ゲルマニウム半導体検出器を<br>用いたγ線スペクトロメータ                                                                                                             | ダストモニタ                                                                                | ゲルマニウム半導体検出器                                                                                                                               | を用いたγ線スペクトロメータ                                                                                                                             |
|      | 検出器等                                                            | ZnS(Ag)シンチレータとプラス<br>チックシンチレータの吹きつけ<br>検出器・貼合せ検出器(日立<br>製作所製ADC-2121他)                | ゲルマニウム半導体検出器<br>(キャンベラ製GC3018型他)<br>多波高分析器(キャンベラ製<br>LYNX DSA MCA型他)                                                                       | ZnS(Ag)シンチレータとプラス<br>チックシンチレータの吹きつけ<br>検出器(日立製作所製ADC-<br>2121)                        |                                                                                                                                            | (キャンベラ製GC3018型他)<br>5製LYNX DSA MCA型他)                                                                                                      |
|      | 測定試料状態                                                          | 生                                                                                     | 灰                                                                                                                                          | 生                                                                                     | 灰                                                                                                                                          | 生                                                                                                                                          |
| 測定   | 測定容器                                                            | なし                                                                                    | U8容器                                                                                                                                       | なし                                                                                    | U8容器                                                                                                                                       | U8容器                                                                                                                                       |
| MILE | 供試料量                                                            | 約11,0                                                                                 | 000m <sup>3</sup>                                                                                                                          | 約2,2                                                                                  | 200m <sup>3</sup>                                                                                                                          | 約1,700m <sup>3</sup>                                                                                                                       |
|      | 測定時間                                                            | 連続                                                                                    | 80,000秒                                                                                                                                    | 連続                                                                                    | 80,000秒                                                                                                                                    | 80,000秒                                                                                                                                    |
|      | 検出下限値                                                           | 全アルファ放射能<br>約0.2mBq/m³<br>全ペータ放射能<br>約0.1mBq/m³<br>(6時間捕集、6時間計数時の<br>値)               | 約0.003~0.01mBq/m³                                                                                                                          | 全アルファ放射能<br>約300mBq/m³<br>全ベータ放射能<br>約10,000mBq/m³                                    | 約0.02~0.06mBq/m³                                                                                                                           | <b>≱</b> 90.01∼0.03mBq/m³                                                                                                                  |
|      | 測定におけるコンタミ防<br>止とその確認法                                          | 保守点検時にBG測定を行い、汚染のないことを確認している。                                                         | 定期的にGe半導体検出器に<br>おいてBG測定を行い、汚染<br>のないことを確認している。                                                                                            | 保守点検時にBG測定を行い、汚染のないことを確認している。                                                         | 定期的にGe半導体検出器に<br>おいてBG測定を行い、汚染<br>のないことを確認している。                                                                                            | 定期的にGe半導体検出器に<br>おいてBG測定を行い、汚染<br>のないことを確認している。                                                                                            |
|      | 使用線源                                                            | Am-241、Cl-36 eckert & ziegler社製の校正証<br>明書付きの標準線源を使用し<br>ている。これによりトレーサビ<br>リティを担保している。 | Cd-109、Co-57,60、Ce-139、<br>Cr-51、Sr-85、Cs-137、Mn-<br>54、Y-88<br>日本アイソトーブ協会製造の<br>JCSS校正証明書付きの標準<br>総源を使用している。これに<br>よりトレーサビリティを担保し<br>ている。 | Am-241、Cl-36 eckert & ziegler社製の校正証<br>明書付きの標準線源を使用し<br>ている。これによりトレーサビ<br>リティを担保している。 | Cd-109、Co-57,60、Ce-139、<br>Cr-51、Sr-85、Cs-137、Mn-<br>54、Y-88<br>日本アイソトーブ協会製造の<br>JCSS校正証明書付きの標準<br>総源を使用している。これに<br>よりトレーサビリティを担保し<br>ている。 | Cd-109、Co-57.60、Ce-139、<br>Cr-51、Sr-85、Cs-137、Mn-<br>54、Y-88<br>日本アイソトーブ協会製造の<br>JCSS校正証明書付きの標準<br>線源を使用している。これに<br>よりトレーサビリティを担保し<br>ている。 |
| 校正   | 線源校正頻度                                                          | (年1回)Am-241及びCI-36を<br>用い計数効率校正を実施。                                                   | (年1回)Co線源や混合線源<br>(U8・マリネリ)で幾何効率校<br>正と計数効率校正を実施                                                                                           | (年1回)Am-241及びCI-36を<br>用い計数効率校正を実施。                                                   | (年1回)Co線源や混合線源<br>(U8・マリネリ)で幾何効率校<br>正と計数効率校正を実施                                                                                           | (年1回)Co線源や混合線源<br>(U8・マリネリ)で幾何効率校<br>正と計数効率校正を実施                                                                                           |
|      | BG測定頻度                                                          | 年1回 900秒                                                                              | 月1回 試料測定時間の2倍<br>以上                                                                                                                        | 年1回 300秒                                                                              | 月1回 200,000秒                                                                                                                               | 月1回 試料測定時間の2倍<br>以上                                                                                                                        |
| 備考   |                                                                 |                                                                                       | 平成27年10月:測定時間変更<br>(3.600秒—21.600秒)<br>平成28年4月:前处理変更(生<br>一灰化)、測定時間変更<br>(21,600秒—80,000秒)                                                 |                                                                                       | 平成28年4月:測定開始                                                                                                                               | 平成28年4月:測定開始<br>平成30年4月:1ヶ月毎の測定<br>に切り換え<br>令和2年4月:測定時間変更<br>(15,000秒→80,000秒)                                                             |

|      | 試料名                                    | 大気浮                                                                                                          | 遊じん                                                                                        | 大気                                                                                  | 中水分                              | 降下物                                                                                                       |                                       |  |  |
|------|----------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|
| 項目   | 試料名                                    | 福島第一原子力発電所から30km<br>国内<br>(簡易型ダストサンプラー)                                                                      | 福島第一原子力発電所から30km<br>国内<br>(簡易型ダストサンプラー)                                                    | 福島第一原子力発電所から30km<br>国内                                                              | 比較対照地点                           | 福島第一原子力発電所から30km<br>圏内                                                                                    | 比較対照地点                                |  |  |
|      | 核種                                     | Cs-134.                                                                                                      | Cs-137                                                                                     | Н                                                                                   | -3                               | Cs-134                                                                                                    | , Cs−137                              |  |  |
|      | 採取方法                                   | ハイボリュームエアサンプ<br>ラーによる連続採取<br>・採取位置:地表上約1m                                                                    | ハイボリュームエアサンプ<br>ラーによる24時間採取<br>・採取位置:地表上約1m                                                | シリカゲルを充填したカラム<br>れる水分を捕集する。                                                         | こ大気を通過させ、大気に含ま                   | 建物屋上等に水盤を設置し、<br>取する。                                                                                     | 1ヶ月後に盤内の水を全量採                         |  |  |
|      | 採取容器等                                  | ろ紙(GE                                                                                                        | 3-100R)                                                                                    |                                                                                     | カラム ( φ 55 mm×H400 mm) 2<br>本    | 大型水盤または小型水盤(SUS製バケツ)                                                                                      |                                       |  |  |
| 試料採取 | 採取量                                    | 約34,500m <sup>3</sup>                                                                                        | 約1,150m³                                                                                   | 約4.5                                                                                | ~45m³                            | 0.5m <sup>2</sup> (大型水盤) または 0.0855m <sup>2</sup> (小型水盤)                                                  |                                       |  |  |
|      | 前処理<br>(酸などの薬品添加を実<br>施しているか)          | †š                                                                                                           | L                                                                                          | † <sub>e</sub>                                                                      | il                               | 採取後、降下物1Lに対                                                                                               | けし1mLの濃塩酸を添加                          |  |  |
|      | 採取器具のコンタミ防止<br>(試料採取器具を適切に<br>使用しているか) | ・地点毎に採取器具を専用とし<br>・ろ紙が触れる部分を使用毎に                                                                             |                                                                                            | シリカゲルを充填したガラスカ<br>る。                                                                | ラムは地点毎に専用としてい                    | 容器は据え置き又は地点毎に                                                                                             | 専用としている。                              |  |  |
|      |                                        | 約1週間毎に回収したろ紙を<br>打ち抜き型を用いて打ち抜き、1ヶ月分をU8容器に収納<br>する。                                                           | 24時間集塵し、ろ紙を全量丸<br>めてU8容器に収納する。                                                             |                                                                                     |                                  | 全量をガスコンロまたはマント<br>容器に採取する。                                                                                | ルヒータ等で濃縮し、残渣をU8                       |  |  |
| 前処理  | (高濃度試料分析の際<br>に、試料を分取して測定              | 1週間分の集じんろ紙(203×<br>254mm)を41.5 фmmの打ち抜<br>5器を用いて12ヶ所計52%を<br>採取する。これを1ヶ月分まと<br>め週ごとのかたよりが出ない<br>よう順にU8へ収納する。 |                                                                                            | シリカゲルに吸着させた水分を<br>る。<br>その後、所定量を減圧蒸留す                                               |                                  | 採取試料:                                                                                                     | 全量を充填                                 |  |  |
|      | 前処理でのコンタミ防止<br>とその確認法                  | U8容器は新品を使用し、試料<br>る。                                                                                         | 充填後、2重に袋掛けをしてい                                                                             | <ul> <li>前処理器具は大気中水分3</li> <li>使用するガラス器具類は洗使用している。</li> <li>テフロンバイアルは毎回新</li> </ul> | 浄後十分に乾燥させたものを                    | U8容器は新品を使用し、試料充填後、2重に袋掛ける。                                                                                |                                       |  |  |
|      | 測定法                                    | 原子力規制委員会編「ゲルマ<br>ンマ線スペクトロメトリ                                                                                 | ニウム半導体検出器によるガ<br>ー」(令和2年9月改訂)                                                              |                                                                                     | f法」(平成14年改訂)に定める<br>蒸留法          | 原子力規制委員会編「ゲルマニウム半導体検出器<br>ンマ線スペクトロメトリー」(令和2年9月改訂                                                          |                                       |  |  |
|      | 測定装置                                   | ゲルマニウム半導<br>γ線スペク                                                                                            | 体検出器を用いた<br>パロメータ                                                                          |                                                                                     | ラウンド液体<br>vョンカウンタ                | ゲルマニウム半導体検出器を用いた<br>γ線スペクトロメータ                                                                            |                                       |  |  |
|      | 検出器等                                   | ゲルマニウム半導体検出器<br>多波高分析器(キャンベラ                                                                                 |                                                                                            | 日立製作所製                                                                              | !LSC-LB7型他                       |                                                                                                           | (キャンベラ製GC3018型他)<br>5製LYNX DSA MCA型他) |  |  |
|      | 測定試料状態                                 | <u>.</u>                                                                                                     | <u> </u>                                                                                   | 液体シンチ                                                                               | ン一タ混合物                           | 乾[                                                                                                        | 固物                                    |  |  |
| 測定   | 測定容器                                   | U83                                                                                                          | 客器                                                                                         | 100 mLテフ                                                                            | ロンバイアル                           | U8:                                                                                                       | 容器                                    |  |  |
| 別足   | 供試料量                                   | 約18,000m <sup>3</sup>                                                                                        | 約1,150m³                                                                                   | 約50                                                                                 | 00 mL                            | 0.5m <sup>2</sup> (大型水盤) また                                                                               | は 0.0855m <sup>2</sup> (小型水盤)         |  |  |
|      | 測定時間                                   | 80,000秒                                                                                                      | 80,000秒                                                                                    | 3,000秒×1                                                                            | D回の平均値                           | 80,0                                                                                                      | 00秒                                   |  |  |
|      | 検出下限値                                  | 約0.002~0.007mBq/m³                                                                                           | 約0.03~0.04mBq/m³                                                                           | 約1 mBq/㎡                                                                            | ∼10 mBq/m³                       | 大型水盤:約0.03~0.2MBq/km<br>小型水盤:約0.2~0.7MBq/km                                                               |                                       |  |  |
|      | 測定におけるコンタミ防<br>止とその確認法                 | 定期的にGe半導体検出器におないことを確認している。                                                                                   | いてBG測定を行い、汚染の                                                                              | 試料毎に新品のバイアル瓶を<br>検出器の汚染確認は、毎測定                                                      |                                  | 定期的にGe半導体検出器におないことを確認している。                                                                                | SいてBG測定を行い、汚染の                        |  |  |
|      |                                        | Cd-109、Co-57,60、Ce-139、C<br>54、Y-88                                                                          | r-51、Sr-85、Cs-137、Mn-                                                                      | Н                                                                                   | -3                               |                                                                                                           | ), Cr-51,Sr-85, Cs-137, Mn-<br>Y-88   |  |  |
|      | 使用線源                                   | 日本アイソトーブ協会製造のJ<br>源を使用している。これにより<br>る。                                                                       | ・レーサビリティを担保してい                                                                             | 日本アイソトープ協会製造の<br>線源を使用している。これによ<br>いる。                                              | JCSS校正証明書付きの標準<br>りトレーサビリティを担保して | 日本アイソトープ協会製造のJ<br>源を使用している。これにより<br>る。                                                                    | CSS校正証明書付きの標準線<br>トレーサビリティを担保してい      |  |  |
| 校正   | 線源校正頻度                                 | (年1回)Co線源や混合線源(U<br>と計数効率校正を実施                                                                               | J8·マリネリ)で幾何効率校正                                                                            | (納入時) メーカーにて効率校<br>(1年毎) メーカーによる簡易<br>精密点検時に、密封制                                    | 点検、精密点検、各1回。                     | (年1回)Co線源や混合線源(U8・マリネリ)で幾何効率校正と計数効率校正を実施                                                                  |                                       |  |  |
|      | BG測定頻度                                 | 月1回 試料測定時間の2倍以                                                                                               | Ł                                                                                          | 測定                                                                                  | の都度                              | 月1回 200,000秒                                                                                              |                                       |  |  |
| 備考   |                                        | 平成26年7月:測定開始<br>平成30年4月:1ヶ月毎の測定<br>に切り換え<br>令和2年4月:測定時間変更<br>(12,000秒→80,000秒)                               | 平成23年11月:測定開始<br>平成27年7月:測定時間変更<br>(3,600秒-20,000秒)<br>平成28年4月:測定時間変更<br>(20,000秒-80,000秒) | 平成30年4月:測定開始                                                                        |                                  | 8地点で大型水盤、4地点で小<br>平成24年4月: 小型水盤による<br>平成27年6月: 比較対照地点の<br>第一成28年4月: 前処理変更(2L<br>国)<br>比較対照地点の<br>80,000秒) | 採取開始<br>D前処理変更(2L分取→2L濃               |  |  |

| 項目   | 試料名                                                                                                                      |                                                                      |                                                    | 土壤                                                                                      |                                                                                         |                                                  |  |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|
|      | 核種                                                                                                                       | Cs-134、Cs-137                                                        | Sr-90                                              | U-234、U-235、U-238                                                                       | Pu-238、Pu-239+240                                                                       | Am-241、Cm-244                                    |  |  |  |  |  |
|      | 採取方法                                                                                                                     | 初                                                                    | 県未耕土の表層(0mmから50mm                                  | から一地点あたり5箇所以上、                                                                          | 、計3kg程度になるまで採取する                                                                        | ) .                                              |  |  |  |  |  |
|      | 採取容器等                                                                                                                    |                                                                      |                                                    | 採土器                                                                                     |                                                                                         |                                                  |  |  |  |  |  |
| 試料採取 | 採取量                                                                                                                      |                                                                      |                                                    | 3kg程度                                                                                   |                                                                                         |                                                  |  |  |  |  |  |
|      | 前処理<br>(酸などの薬品添加を実<br>施しているか)                                                                                            |                                                                      |                                                    | なし                                                                                      |                                                                                         |                                                  |  |  |  |  |  |
|      | 採取器具のコンタミ防止<br>(試料採取器具を適切に<br>使用しているか)                                                                                   | 探土器は共用で、採取の都度洗浄を行っている。                                               |                                                    |                                                                                         |                                                                                         |                                                  |  |  |  |  |  |
|      | 使用しているか)                                                                                                                 |                                                                      |                                                    |                                                                                         |                                                                                         |                                                  |  |  |  |  |  |
|      | 方法                                                                                                                       | 一昼                                                                   | 夜程度自然乾燥させ、105℃で                                    | 72時間以上加熱乾燥させる。ク                                                                         | アにふるいにかけ、十分に混合す                                                                         | する。                                              |  |  |  |  |  |
| 前処理  | 分取、縮分の代表性<br>(高濃度試料分析の際<br>に、試料を分取して測定<br>している場合)                                                                        | 1地点当た                                                                | り数箇所から採取した試料を混                                     | <b>見合し、さらに、その試料から均</b> ・                                                                | 等に分取している。(インクリメン                                                                        | /卜縮分法)                                           |  |  |  |  |  |
|      | ・試料毎に前処理皿及びふるいは新品を使用<br>前処理でのコンタミ防止・試料毎に地点専用のSUS製ふるいを使用(比較対照地点)<br>・試料処理をに汚象がないことを確認<br>・1U8容器は新品を使用し、試料充填後、2重に袋掛けをしている。 |                                                                      |                                                    |                                                                                         |                                                                                         |                                                  |  |  |  |  |  |
|      | 測定法                                                                                                                      | 原子力規制委員会編「ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー」(令和2年9月改訂)                    | 文部科学省編「放射性ストロンチウム分析法」(平成15年<br>改訂)に定めるイオン交換法       | 文部科学省編「ウラン分析<br>法」(平成14年改訂)に定める<br>TBP(リン酸三ブチル)抽出法                                      | 文部科学省編「プルトニウム<br>分析法」(平成2年改訂)に定<br>めるイオン交換法                                             | 文部科学省編「アメリシウム<br>分析法」(平成2年)に定める<br>イオン交換法        |  |  |  |  |  |
|      | 測定装置                                                                                                                     | ゲルマニウム半導体検出器を<br>用いたγ線スペクトロメータ                                       |                                                    |                                                                                         |                                                                                         |                                                  |  |  |  |  |  |
|      | 検出器等                                                                                                                     | ゲルマニウム半導体検出器<br>(キャンベラ製GC3018型他)<br>多波高分析器(キャンベラ製<br>LYNX DSA MCA型他) | 日立製作所製LBC-4202B型                                   |                                                                                         | -450型他)<br>パウェア)他)                                                                      |                                                  |  |  |  |  |  |
|      | 測定試料状態                                                                                                                   | 乾土                                                                   | 鉄共沈物                                               | 酸化物                                                                                     | 酸化                                                                                      | 比物                                               |  |  |  |  |  |
| 2014 | 測定容器                                                                                                                     | U8容器                                                                 | ステンレス皿(25mm $\phi$ )                               | ステンレス板 (25mm ø )                                                                        | ステンレス村                                                                                  | 坂 (25mm φ )                                      |  |  |  |  |  |
| 測定   | 供試料量                                                                                                                     | 約100g                                                                | 約100g                                              | 約10g                                                                                    | 約                                                                                       | 50g                                              |  |  |  |  |  |
|      | 測定時間                                                                                                                     | 80,000秒                                                              | 3,600秒                                             | 80,000秒                                                                                 | 80,000秒 80,000秒                                                                         |                                                  |  |  |  |  |  |
|      | 検出下限値                                                                                                                    | 約1~10Bq/kg乾土                                                         | 約0.2~0.5Bq/kg乾土                                    | 約0.1~4Bq/kg乾土                                                                           | 約0.01~0.2 Bg/kg乾土                                                                       |                                                  |  |  |  |  |  |
|      | 測定におけるコンタミ防<br>止とその確認法                                                                                                   | 定期的にGe半導体検出器に<br>おいてBG測定を行い、汚染<br>のないことを確認している。                      | 試料毎に新品のステンレス皿を使用し、検出器の汚染については、測定時にBG測定を行っている。      | 試料毎に新品のステンレス板を使用し、検出器の汚染については、毎月BG測定を行っている。                                             | 試料毎に新品のステンレス板を<br>いては、毎月BG測定を行って                                                        |                                                  |  |  |  |  |  |
|      |                                                                                                                          | Cd-109、Co-57,60、Ce-139、<br>Cr-51、Sr-85、Cs-137、Mn-<br>54、Y-88         | Sr-90                                              | Np-237,Am-241,Cm-244                                                                    | Np-237,Am-241,Cm-244                                                                    | Gd=148,Np=237,Am=241,Cm=<br>244                  |  |  |  |  |  |
|      | 使用線源                                                                                                                     |                                                                      | プ協会製造のJCSS校正証明書                                    | -<br>情付きの標準線源を使用してい                                                                     | る。これによりトレーサビリティを                                                                        | 担保している。                                          |  |  |  |  |  |
| 校正   | 線源校正頻度                                                                                                                   | (年1回)Co線源や混合線源<br>(UB・マリネリ)で幾何効率校<br>正と計数効率校正を実施                     | (納入時)メーカーにて効率校正<br>(1年毎JJCAC分析確認調査時使<br>用試料にて効率確認。 | (納入時)メーカーにて効率及びエ<br>ネルギー校正<br>(1年毎)メーカーによる保守点検<br>1回<br>(毎月)県が密封線源により効率<br>及びエネルギー校正を実施 | (納入時)メーカーにて効率及びエ<br>ネルギー校正<br>(1年毎)メーカーによる保守点検<br>1回<br>(毎月)県が密封線源により効率<br>及びエネルギー校正を実施 | (納入時)メーカーにて効率及びエネルギー校正<br>(1年毎)メーカーによる保守点検<br>1回 |  |  |  |  |  |
|      | BG測定頻度                                                                                                                   | 月1回 200,000秒                                                         | 測定の都度                                              | 月1回 80,000秒                                                                             | 月1回 8                                                                                   | 80,000秒                                          |  |  |  |  |  |
| 備考   |                                                                                                                          | 平成28年4月:採取方法変更(<br>Cs-134、Cs-137の前処理変更                               |                                                    | 令和2年5月:測定開始                                                                             | 平成28年4月:採取方法変更(<br>Cs-134、Cs-137の前処理変更                                                  |                                                  |  |  |  |  |  |
|      |                                                                                                                          |                                                                      |                                                    |                                                                                         |                                                                                         |                                                  |  |  |  |  |  |

| 項目      | 試料名                                               |                                                                      |                                                                              | 上水                                                 |                                                                                     |
|---------|---------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|
|         | 核種                                                | Cs-134、Cs-137                                                        | H-3                                                                          | Sr-90                                              | Pu-238, Pu-239+240                                                                  |
|         | 採取方法                                              |                                                                      | 各地点の上水(水道水                                                                   | )を蛇口より容器に採取する。                                     |                                                                                     |
|         | 採取容器等                                             | ポリタンク                                                                | ポリビン                                                                         | ポリタンク                                              | ポリタンク                                                                               |
| 試料採取    | 採取量                                               | 20L                                                                  | 1L                                                                           | 100L                                               | 100L                                                                                |
|         | 前処理<br>(酸などの薬品添加を実<br>施しているか)                     | 上水1Lに対し1mLの濃塩酸を<br>添加                                                | なし                                                                           | 上水1Lに対し1mLの濃塩酸を<br>添加                              | 上水1Lに対し1mLの濃硝酸を添加                                                                   |
|         | 採取器具のコンタミ防止<br>(試料採取器具を適切に<br>使用しているか)            | 採取容器につ                                                               | いては、採取地点毎に新品の                                                                | 容器を使用し、試料水にて共洗                                     | いを実施している。                                                                           |
|         | 方法                                                | 加熱濃縮法                                                                | 減圧蒸留法                                                                        | イオン交換法                                             | イオン交換法                                                                              |
| 前処理     | 分取、縮分の代表性<br>(高濃度試料分析の際<br>に、試料を分取して測定<br>している場合) | 採取試料全量を加熱濃縮。                                                         | 1Lポリビンより上澄水100mLを分取。                                                         | 採取試料全量を加熱濃縮後、<br>イオン交換法により処理。                      | 10分程度蛇口から上水を流しつづけた後に採取する。<br>複数の採取容器の上水を、前処理<br>の際に混合し、均一化を図る。                      |
|         | 前処理でのコンタミ防止<br>とその確認法                             | ・試料処理毎に汚染がないこと                                                       | 斗充填後、2重に袋掛けをしてし                                                              |                                                    |                                                                                     |
|         | 測定法                                               | 原子力規制委員会編「ゲルマ<br>ニウム半導体検出器によるガ<br>ンマ線スペクトロメトリー」(令<br>和2年9月改訂)        | 文部科学省編「トリチウム分析法」(平成14年改訂)に定める減圧蒸留法                                           | 文部科学省編「放射性ストロンチウム分析法」(平成15年<br>改訂)に定めるイオン交換法       | 文部科学省編「プルトニウム分析<br>法」(平成2年改訂)に定めるイオン<br>交換法                                         |
|         | 測定装置                                              | ゲルマニウム半導体検出器<br>を用いた γ 線スペクトロメータ                                     | 低バックグラウンド液体<br>シンチレーションカウンタ                                                  | 低バックグラウンド<br>2πガスフロー計数装置                           | α 線スペクトロメータ                                                                         |
|         | 検出器等                                              | ゲルマニウム半導体検出器<br>(キャンベラ製GC3018型他)<br>多波高分析器(キャンベラ製<br>LYNX DSA MCA型他) | 日立製作所製LSC-LB7型他                                                              | 日立製作所製LBC-4202B型                                   | シリコン半導体検出器(ORTEC製<br>BU-017-450型他)<br>多波高分析器(ORTEC製デジタル<br>MCA(ソフトウェア)他)            |
|         | 測定試料状態                                            | 乾固物                                                                  | 液体シンチレータ混合物                                                                  | 鉄共沈物                                               | 酸化物                                                                                 |
| 704 eta | 測定容器                                              | U8容器                                                                 | 100mlテフロンバイアル                                                                | ステンレス皿(25mm¢)                                      | ステンレス板 (25mm φ )                                                                    |
| 測定      | 供試料量                                              | 20L                                                                  | 約50.00mL                                                                     | 100L                                               | 100L                                                                                |
|         | 測定時間                                              | 80,000秒                                                              | 3,000秒×10回の平均値                                                               | 3,600秒                                             | 80,000秒                                                                             |
|         | 検出下限値                                             | 約0.001~0.002Bq/L                                                     | 約0.3~0.5Bq/L                                                                 | 約0.00015~0.0004Bq/L                                | 約0.000003~0.00001 Bq/L                                                              |
|         | 測定におけるコンタミ防<br>止とその確認法                            | 定期的にGe半導体検出器に<br>おいてBG測定を行い、汚染<br>のないことを確認している。                      | 試料毎に新品のバイアル瓶を使用し、検出器の汚染については、測定時にBG測定を行っている。                                 | 試料毎に新品のステンレス皿を使用し、検出器の汚染については、測定時にBG測定を行っている。      | 試料毎に新品のステンレス板を使<br>用し、検出器の汚染については、毎<br>月BG測定を行っている。                                 |
|         |                                                   | Cd-109、Co-57,60、Ce-139、<br>Cr-51、Sr-85、Cs-137、Mn-<br>54、Y-88         | H-3                                                                          | Sr-90                                              | Np-237,Am-241,Cm-244                                                                |
|         | 使用線源                                              |                                                                      | CSS校正証明書付きの標準線                                                               | 源を使用している。これによりト                                    | レーサビリティを担保している。                                                                     |
| 校正      | 線源校正頻度                                            | (年1回)Co線源や混合線源<br>(U8・マリネリ)で幾何効率校<br>正と計数効率校正を実施                     | (納入時)メーカーにて効率校正<br>(1年毎)メーカーによる簡易点<br>検、精密点検、各1回。精密点検<br>時に、密封線源により効率確<br>認。 | (納入時)メーカーにて効率校正<br>(1年毎)JCAC分析確認調査時使<br>用試料にて効率確認。 | (納入時)メーカーにて効率及びエネル<br>ギー校正<br>(1年毎)メーカーによる保守点検1回<br>(毎月)県が密封線源により効率及びエ<br>ネルギー校正を実施 |
|         | BG測定頻度                                            | 月1回 200,000秒                                                         | 測定の都度                                                                        | 測定の都度                                              | 月1回 80,000秒                                                                         |
| 備考      |                                                   | 平成28年4月:前処理変更<br>(生→加熱濃縮法)                                           |                                                                              |                                                    |                                                                                     |
|         |                                                   |                                                                      |                                                                              |                                                    |                                                                                     |

| 項目   | 試料名                                               |                                                                                 |                                                                      |                                                                              | 海水                                                                         |                                                    |                                                                             |  |
|------|---------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|--|
|      | 核種                                                | 全ペータ放射能                                                                         | Cs-134, Cs-137                                                       | н                                                                            | <b>⊢3</b>                                                                  | Sr-90                                              | Pu-238, Pu-239+240                                                          |  |
|      | 採取方法                                              |                                                                                 |                                                                      | 海面にホースを入れ、表層の                                                                | k(~1m)をポンプにより採取す                                                           | <b>ა</b> .                                         |                                                                             |  |
|      | 採取容器等                                             | ポリビン                                                                            | ポリタンク                                                                | ポリ                                                                           | Jビン                                                                        | ポリタンク                                              | ポリタンク                                                                       |  |
| 試料採取 | 採取量                                               | 2L                                                                              | 40L                                                                  | 1L                                                                           | 2L                                                                         | 60L                                                | 100L                                                                        |  |
|      | 前処理<br>(酸などの薬品添加を実<br>施しているか)                     | なし                                                                              | 海水1Lに対し1mLの濃塩酸を<br>添加                                                | ta                                                                           | îL                                                                         | 海水1Lに対し1mLの濃塩酸を<br>添加                              | 海水1Lに対し1mLの濃硝酸を添加                                                           |  |
|      | 採取器具のコンタミ防止<br>(試料採取器具を適切に<br>使用しているか)            |                                                                                 | 採取容器につ                                                               | いては、採取地点毎に新品の                                                                | 容器を使用し、試料水にて共洗                                                             | いを実施している。                                          |                                                                             |  |
|      | 方法                                                | 鉄・パリウム共沈法                                                                       | リンモリブデン酸アンモニウム<br>-二酸化マンガン共沈法                                        | 減圧蒸留法                                                                        | 電解濃縮法                                                                      | イオン交換法                                             | イオン交換法                                                                      |  |
| 前処理  | 分取、縮分の代表性<br>(高濃度試料分析の際<br>に、試料を分取して測定<br>している場合) | 2Lポリビンより上澄水1Lを分取。                                                               | 20Lポリタンク2本から10Lず<br>つ分取。                                             | 1Lポリビンより上澄水100mL<br>を分取。                                                     | 2Lポリビンより上澄水約1,200<br>mLを分取。                                                | 20Lポリタンク3本使用。内2<br>本は全量使用。残る1本は<br>10L分取。          | 10分程度ポンプから海水を排水した<br>後に採取する。<br>複数の採取容器の海水を、前処理<br>の際に混合し、均一化を図る。           |  |
|      | 前処理でのコンタミ防止とその確認法                                 | ・採取地点毎の専用容器または・試料処理毎に汚染がないこと・ ・U8容器は新品を使用し、試料・テフロンバイアルは毎回新品                     | を確認<br>充填後、2重に袋掛けをしてい                                                | <b>ა</b> .                                                                   |                                                                            |                                                    |                                                                             |  |
|      | 測定法                                               | 文部科学省編「全ベータ放射<br>能測定法」(昭和51年改訂)                                                 | 原子力規制委員会編「ゲルマ<br>ニウム半導体検出器によるガンマ線スペクトロメトリー」(令<br>和2年9月改訂)            | るガ 大部科学 自編 トリナリム分 析法」(平成14年改訂                                                |                                                                            | 文部科学省編「放射性ストロンチウム分析法」(平成15年改訂)に定めるイオン交換法           | 文部科学省編「プルトニウム分析<br>法」(平成2年改訂)に定めるイオン<br>交換法                                 |  |
|      | 測定装置                                              | 低バックグラウンド<br>2πガスフロー計数装置                                                        | ゲルマニウム半導体検出器<br>を用いたγ線スペクトロメータ                                       |                                                                              | ラウンド液体<br>ションカウンタ                                                          | 低バックグラウンド<br>2πガスフロー計数装置                           | α線スペクトロメータ                                                                  |  |
|      | 検出器等                                              | 日立製作所製LBC-4202B型                                                                | ゲルマニウム半導体検出器<br>(キャンベラ製GC3018型他)<br>多波高分析器(キャンベラ製<br>LYNX DSA MCA型他) | 日立製作所製                                                                       | LSC-LB7型他                                                                  | 日立製作所製LBC-4202B型                                   | シリコン半導体検出器(ORTEC製<br>BU-017-450型他)<br>多波高分析器(ORTEC製デジタル<br>MCA(ソフトウェア)他)    |  |
|      | 測定試料状態                                            | 鉄・バリウム共沈物                                                                       | リンモリブデン酸アンモニウムと二酸化マンガンの混合物                                           | 液体シンチレータ混合物                                                                  |                                                                            | 鉄共沈物                                               | 酸化物                                                                         |  |
| 704  | 測定容器                                              | ステンレス皿(25mm φ)                                                                  | U8容器                                                                 | 100mlテフロンバイアル 20 mL低拡散ポリエチレン<br>バイアル                                         |                                                                            | ステンレス皿(25mm $\phi$ )                               | ステンレス板 (25mm φ )                                                            |  |
| 測定   | 供試料量                                              | 1L                                                                              | 20L以上                                                                | 約50.00mL 約1,000 mL                                                           |                                                                            | 50L                                                | 100L                                                                        |  |
|      | 測定時間                                              | 3,600秒×7回のうち最大最小<br>を除いた5回の平均値                                                  | 80,000秒                                                              | 3,000秒×10                                                                    | 0回の平均値                                                                     | 3,600秒                                             | 80,000秒                                                                     |  |
|      | 検出下限値                                             | 約0.01Bq/L                                                                       | 約0.001~0.002Bq/L                                                     | 約0.3~0.5Bq/L                                                                 | 約0.03~0.06Bq/L                                                             | 約0.0005Bq/L                                        | 約0.000003~0.00001 Bq/L                                                      |  |
|      | 測定におけるコンタミ防<br>止とその確認法                            | 試料毎に新品のステンレス皿<br>を使用し、検出器の汚染につ<br>いては、測定時にBG測定を<br>行っている。                       | 定期的にGe半導体検出器に<br>おいてBG測定を行い、汚染<br>のないことを確認している。                      | 試料毎に新品のパイアル瓶を<br>ては、測定時にBG測定を行っ                                              | <br> 使用し、検出器の汚染につい<br> <br> でいる。                                           | 試料毎に新品のステンレス皿を使用し、検出器の汚染については、測定時にBG測定を行っている。      | 試料毎に新品のステンレス板を使用し、検出器の汚染については、毎月BG測定を行っている。                                 |  |
|      |                                                   | U <sub>3</sub> O <sub>8</sub> Sr-90                                             | Cd-109、Co-57,60、Ce-139、<br>Cr-51、Sr-85、Cs-137、Mn-<br>54、Y-88         | н                                                                            | i-3                                                                        | Sr-90                                              | Np-237,Am-241,Cm-244                                                        |  |
|      | 使用線源                                              | 放射能測定シリーズ「全ベータ放射能測定法」に基づき使用。                                                    | 日本アイソトープ協会製造のJ源を使用している。これにより<br>る。                                   |                                                                              | 日本アイントープ協会製造の<br>JRIA校正証明書付きの標準<br>線源を使用している。これに<br>よりトレーサビリティを担保し<br>ている。 | 日本アイソトープ協会製造のJ<br>使用している。これによりトレー                  | CSS校正証明書付きの標準線源を<br>-サビリティを担保している。                                          |  |
| 校正   | 線源校正頻度                                            | 測定の都度                                                                           | (年1回) Co線源や混合線源<br>(U8・マリネリ)で幾何効率校<br>正と計数効率校正を実施                    | (納入時)メーカーにて効率校正<br>(1年毎)メーカーによる簡易点<br>検、精密点検、各1回。精密点検<br>時に、密封線源により効率確<br>認。 | 県にて効率校正<br>(1年毎)メーカーによる簡易点                                                 | (納入時)メーカーにて効率校正<br>(1年毎)JCAC分析確認調査時使<br>用試料にて効率確認。 | (納入時)メーカーにて効率及びエネルギー校正<br>(1年毎)メーカーによる保守点検1回<br>(毎月)県が密封線源により効率及びエネルギー校正を実施 |  |
|      | BG測定頻度                                            | 測定の都度                                                                           | 月1回 200,000秒                                                         | 測定(                                                                          | の都度                                                                        | 測定の都度                                              | 月1回 80,000秒                                                                 |  |
| 備考   |                                                   | 令和3年4月:測定時間変更<br>(1F周辺3,600秒測定5回のうち<br>長地一3,600秒測定7回のうち<br>ち最大最小を除いた5回の平<br>均値) | 平成28年4月:前処理変更<br>(生ーリンモリブデン酸アンモニウム-二酸化マンガン共沈<br>法)                   |                                                                              | 令和4年5月:測定開始                                                                |                                                    |                                                                             |  |

|      |                                                                     |                                                                      |                                                    |                                                                                     |                                                                                              | <b>公業</b>                                                                                                                     |  |  |
|------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| 項目   | 試料名                                                                 |                                                                      | 海底土                                                |                                                                                     | 福島第一原子力発電所から30km<br>国内                                                                       | 比較対照地点                                                                                                                        |  |  |
|      | 核種                                                                  | Cs-134、Cs-137                                                        | Sr-90                                              | Pu-238, Pu-239+240                                                                  | Cs-13                                                                                        | 4、Cs-137                                                                                                                      |  |  |
|      | 採取方法                                                                |                                                                      | 船上から採泥器にて採取す                                       | ిం.                                                                                 | 採取地点付近にある樹木より                                                                                | 2年葉を採取する。                                                                                                                     |  |  |
|      | 採取容器等                                                               |                                                                      | 採泥器                                                |                                                                                     | ť=                                                                                           | ール袋                                                                                                                           |  |  |
| 試料採取 | 採取量                                                                 |                                                                      | 3kg程度                                              |                                                                                     | 200g程度                                                                                       |                                                                                                                               |  |  |
|      | 前処理<br>(酸などの薬品添加を実施しているか)<br>採取器具のコンタミ防止<br>(試料採取器具を適切に<br>使用しているか) | 採泥袋は地点毎に新品を使用                                                        | なし                                                 | ている。                                                                                | なし 探取地点毎に新品の袋に採取                                                                             |                                                                                                                               |  |  |
|      | 方法                                                                  | 一昼夜程度自然乾燥させ、105<br>する。                                               | 5℃で72時間以上加熱乾燥させ                                    | する。次にふるいにかけ、十分に混合                                                                   | 95℃で所定時間加熱乾燥後、                                                                               | 粉砕機により粉砕                                                                                                                      |  |  |
| 前処理  |                                                                     | 地点当たり数箇所から採取した<br>縮分法)                                               | ≒試料を混合し、さらに、その討                                    | 乾燥後の試料から所定量を均                                                                       | 等に分取                                                                                         |                                                                                                                               |  |  |
|      | 前処理でのコンタミ防止<br>とその確認法                                               | ・試料毎に前処理皿及びふるし・試料処理毎に汚染確認を行い<br>・U8容器は新品を使用し、試料                      |                                                    | `రెం                                                                                | ・加熱乾燥に用いるパットは十分洗浄して使用<br>・粉砕器は、地点専用のものを使用<br>・U8容器は新品を使用し、試料充填後、2重に袋掛けをしてい<br>る。             |                                                                                                                               |  |  |
|      | 測定法                                                                 | 原子力規制委員会編「ゲルマ<br>ニウム半導体検出器によるガ<br>ンマ線スペクトロメトリー」(令<br>和2年9月改訂)        | 文部科学省編「放射性ストロンチウム分析法」(平成15年<br>改訂)に定めるイオン交換法       | 文部科学省編「ブルトニウム分析<br>法」(平成2年改訂)に定めるイオン<br>交換法                                         |                                                                                              | ニウム半導体検出器によるガンマ<br>ー」(令和2年9月改訂)                                                                                               |  |  |
|      | 測定装置                                                                | ゲルマニウム半導体検出器<br>を用いたγ線スペクトロメータ                                       | 低バックグラウンド<br>2πガスフロー計数装置                           | α 線スペクトロメータ                                                                         |                                                                                              | 尊体検出器を用いた<br>ペクトロメータ                                                                                                          |  |  |
|      | 検出器等                                                                | ゲルマニウム半導体検出器<br>(キャンベラ製GC3018型他)<br>多波高分析器(キャンベラ製<br>LYNX DSA MCA型他) | 日立製作所製LBC-4202B型                                   | シリコン半導体検出器(ORTEC製<br>BU-017-450型他)<br>多波高分析器(ORTEC製デジタル                             |                                                                                              | 器(キャンベラ製GC3018型他)<br>ラ製LYNX DSA MCA型他)                                                                                        |  |  |
|      | 測定試料状態                                                              | 乾土                                                                   | 鉄共沈物                                               | MCA(ソフトウェア)他)<br>酸化物                                                                | 較                                                                                            | 燥物                                                                                                                            |  |  |
|      | 測定容器                                                                | U8容器                                                                 | U8容器 ステンレス皿(25mmφ) ステンレス板(25mmφ                    |                                                                                     | U8容器                                                                                         |                                                                                                                               |  |  |
| 測定   | 供試料量                                                                | 約100g                                                                | 約100g                                              | 100g                                                                                | *                                                                                            | 50g                                                                                                                           |  |  |
|      | 測定時間                                                                | 80,000秒                                                              | 3,600秒                                             | 80,000秒                                                                             | 80                                                                                           | .000秒                                                                                                                         |  |  |
|      | 検出下限値                                                               | 約0.5~1.5Bq/kg乾土                                                      | 約0.15~0.25Bq/kg乾土                                  | 約0.01~0.2 Bq/kg                                                                     | 約0.1~2Bg/kg生                                                                                 |                                                                                                                               |  |  |
|      |                                                                     | 定期的にGe半導体検出器に<br>おいてBG測定を行い、汚染<br>のないことを確認している。                      | 試料毎に新品のステンレス皿を使用し、検出器の汚染については、測定時にBG測定を行っている。      | 試料毎に新品のステンレス板を使用し、検出器の汚染については、毎月BG測定を行っている。                                         | 定期的にGe半導体検出器によ<br>ことを確認している。                                                                 | らいてBG測定を行い、汚染のない                                                                                                              |  |  |
|      |                                                                     | Cd-109、Co-57,60、Ce-139、<br>Cr-51、Sr-85、Cs-137、Mn-<br>54、Y-88         | Sr-90                                              | Np-237,Am-241,Cm-244                                                                | Cd-109、Co-57,60、Ce-139、C<br>Y-88                                                             | Cr-51、Sr-85、Cs-137、Mn-54、                                                                                                     |  |  |
|      | 使用線源                                                                |                                                                      | CSS校正証明書付きの標準線.                                    | 源を使用している。これによりトレー                                                                   | 日本アイソトーブ協会製造のJ<br>を使用している。これによりトレ                                                            | CSS校正証明書付きの標準線源<br>ルーサビリティを担保している。                                                                                            |  |  |
| 校正   | 線源校正頻度                                                              | (年1回) Co線源や混合線源<br>(UB・マリネリ)で幾何効率校<br>正と計数効率校正を実施                    | (納入時)メーカーにて効率校正<br>(1年毎)JCAC分析確認調査時使<br>用試料にて効率確認。 | (納入時)メーカーにて効率及びエネル<br>ギー校正<br>(1年毎)メーカーによる保守点検1回<br>(毎月)県が密封線源により効率及びエ<br>ネルギー校正を実施 | (年1回)Co線源や混合線源(<br>数効率校正を実施                                                                  | U8・マリネリ)で幾何効率校正と計                                                                                                             |  |  |
|      | BG測定頻度                                                              | 月1回 200,000秒                                                         | 測定の都度                                              | 月1回 80,000秒                                                                         | 月1回                                                                                          | 200,000秒                                                                                                                      |  |  |
| 備考   |                                                                     |                                                                      |                                                    |                                                                                     | 秒)<br>平成28年4月:前処理変更(生<br>マニュアルに示す減容処理(別<br>より松の木が減少しており、総<br>採取量を抑える必要がある。言<br>検出可能である地点が多いこ | D測定時間変更(3.600秒→10.800<br>→乾燥)<br>反化)は実施していない。除染等に<br>統約に採取していくには、1回の<br>手た。松葉はそのまま測定しても<br>とから、濃縮度を小さくしても支障<br>ら、灰までの濃縮は行わず、乾 |  |  |

| 項目   | 試料名                                               |                                                                                                 | ほんだわら                                                                                      |                                                                                        |  |
|------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
|      | 核種                                                | Cs-134、Cs-137                                                                                   | Sr-90                                                                                      | Pu-238, Pu-239+240                                                                     |  |
|      | 採取方法                                              | 採取地点付边                                                                                          | 丘に生息しているほんだわらの                                                                             | 葉茎部を採取する。                                                                              |  |
|      | 採取容器等                                             |                                                                                                 | ビニール袋                                                                                      |                                                                                        |  |
| 試料採取 | 採取量                                               |                                                                                                 | 9kg程度                                                                                      |                                                                                        |  |
|      | 前処理<br>(酸などの薬品添加を実<br>施しているか)                     |                                                                                                 | なし                                                                                         |                                                                                        |  |
|      | 採取器具のコンタミ防止<br>(試料採取器具を適切に<br>使用しているか)            |                                                                                                 | 採取地点毎に専用の器具を                                                                               | 使用                                                                                     |  |
|      | 方法                                                | ・水洗後水切りし、95℃で所<br>定時間加熱乾燥後、粉砕器<br>により粉砕                                                         | ・水洗後水切りし、95°Cで所<br>定時間加熱乾燥後、粉砕器<br>により粉砕<br>・乾燥後の試料を電気炉で加<br>熱分解し、生成した灰試料を<br>イオン交換法により処理。 | ・水洗後水切りし、95°Cで所定時間<br>加熱乾燥後、粉砕器により粉砕<br>・乾燥後の試料を電気炉で加熱分<br>解し、生成した灰試料をイオン交換<br>法により処理。 |  |
| 前処理  | 分取、縮分の代表性<br>(高濃度試料分析の際<br>に、試料を分取して測定<br>している場合) | 乾燥後の試料から所定量を<br>均等に分取                                                                           | 灰試料から所定量を均等に<br>分取                                                                         | 灰試料から所定量を均等に分取                                                                         |  |
|      | 前処理でのコンタミ防止<br>とその確認法                             | ・加熱乾燥に用いるパットは<br>十分に洗浄して使用。<br>・粉砕器は、地点専用のもの<br>を使用。<br>・18容器は新品を使用し、試<br>料充填後、2重に袋掛けをし<br>ている。 | ・加熱乾燥に用いるパット及び加熱分解に用いる磁性皿は十分に洗浄して使用。<br>・粉砕器は、地点専用のものを使用。                                  | ・加熱乾燥に用いるバット及び加熱<br>分解に用いる磁性皿は十分に洗浄<br>して使用。<br>・粉砕器は、地点専用のものを使<br>用。                  |  |
|      | 測定法                                               | 原子力規制委員会編「ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー」(令和2年9月改訂)                                               | 文部科学省編「放射性ストロンチウム分析法」(平成15年<br>改訂)に定めるイオン交換法                                               | 文部科学省編「プルトニウム分析<br>法」(平成2年改訂)に定めるイオン<br>交換法                                            |  |
|      | 測定装置                                              | ゲルマニウム半導体検出器を<br>用いたγ線スペクトロメータ                                                                  | 低バックグラウンド<br>2πガスフロー計数装置                                                                   | α 線スペクトロメータ                                                                            |  |
|      | 検出器等                                              | ゲルマニウム半導体検出器<br>(キャンベラ製GC3018型他)<br>多波高分析器(キャンベラ製<br>LYNX DSA MCA型他)                            | 日立製作所製LBC-4202B型                                                                           | シリコン半導体検出器(ORTEC製<br>BU-017-450型他)<br>多波高分析器(ORTEC製デジタル<br>MCA(ソフトウェア)他)               |  |
|      | 測定試料状態                                            | 乾燥物                                                                                             | 鉄共沈物                                                                                       | 酸化物                                                                                    |  |
| 測定   | 測定容器                                              | U8容器                                                                                            | ステンレス皿(25mm φ)                                                                             | ステンレス板 (25mm φ )                                                                       |  |
| 测足   | 供試料量                                              | 約100g                                                                                           | 約30~40g(生試料1kg相当の<br>灰試料量)                                                                 | 約20~40g(生試料500g~1kg相当<br>の灰試料量)                                                        |  |
|      | 測定時間                                              | 80,000秒                                                                                         | 3,600秒                                                                                     | 80,000秒<br>約1~3 mBq/kg生                                                                |  |
|      | 検出下限値                                             | 約0.1~0.2Bq/kg生                                                                                  | 約0.1~0.2Bq/kg生                                                                             |                                                                                        |  |
|      | 測定におけるコンタミ防止とその確認法                                | 定期的にGe半導体検出器に<br>おいてBG測定を行い、汚染<br>のないことを確認している。                                                 | 試料毎に新品のステンレス皿<br>を使用し、検出器の汚染につ<br>いては、測定時にBG測定を<br>行っている。                                  | 試料毎に新品のステンレス板を使用し、検出器の汚染については、毎月BG測定を行っている。                                            |  |
|      |                                                   | Cd-109、Co-57,60、Ce-139、<br>Cr-51、Sr-85、Cs-137、Mn-<br>54、Y-88                                    | Sr-90                                                                                      | Np-237,Am-241,Cm-244                                                                   |  |
|      | 使用線源                                              | 日本アイソトープ協会製造のリサビリティを担保している。                                                                     | CSS校正証明書付きの標準線                                                                             | 原を使用している。これによりトレー                                                                      |  |
| 校正   | 線源校正頻度                                            | (年1回) Co線源や混合線源<br>(UB・マリネリ)で幾何効率校<br>正と計数効率校正を実施。                                              | (納入時)メーカーにて効率校<br>正<br>(1年毎)JCAC分析確認調査<br>時使用試料にて効率確認                                      | (納入時)メーカーにて効率及びエネルギー校正<br>(1年毎)メーカーによる保守点検1回<br>(毎月)県が密封線源により効率及びエネルギー校正を実施            |  |
|      | BG測定頻度                                            | 月1回 200,000秒                                                                                    | 測定の都度                                                                                      | 月1回 80,000秒                                                                            |  |
| 備考   |                                                   |                                                                                                 |                                                                                            |                                                                                        |  |

# 第 4 測 定 結 果

# 4-1 空間放射線

# 4-1-1 空間線量率

# (1) ガンマ線

東京電力ホールディングス株式会社福島第一原子力発電所から半径 5km 未満の地域(以下「1F 近傍」という。) で 8 地点、福島第一原子力発電所から概ね半径 5km 以上 30km 未満又は福島第二 原子力発電所から概ね半径 30km 未満の地域(以下「1F・2F 周辺」という。)で 31 地点、福島第一 及び第二原子力発電所からそれぞれ 30km 以上離れた地域(以下「比較対照地点」という。)で3地 点、計 42 地点で NaI シンチレーション検出器により空間線量率 (ガンマ線) を常時測定しました。 各地点の測定結果は以下のとおりです。詳細な測定値は38~41ページを参照。

# ア 月間平均値

各測定地点における月間平均値は、福島第一原子力発電所の事故(以下「事故」という。)の 影響により事故前の月間平均値を上回っています。年月の経過とともに減少する傾向にありま した。

事故直後の最大値と今期の測定値の最大値を比較すると、減少率の高い順から 1F・2F 周辺、 1F 近傍、比較対象地点でした。今期の測定値は、いずれの月も数値の高い順から 1F 近傍、1F・ 2F 周辺、比較対照地点でした。

各地点の空間線量率 (ガンマ線) の月間平均値 (単位:nGy/h)

| 測定    | 測定  | 各地点       | 京の月間平均値   | 直の範囲         | 過去の月間平均値       |         |          |         |  |
|-------|-----|-----------|-----------|--------------|----------------|---------|----------|---------|--|
| エリア   | 地点数 | 10 月      | 11月       | 12 月         | R2 $\sim^{*1}$ | H26∼*1  | 事故直後*1   | 事故前*1   |  |
| 1F    | 8   | 219~3,620 | 218~3,630 | 215~3,570    | 219~           | 335~    | 910~     |         |  |
| 近傍    | 0   | 今期最大値は事   | は直後の最大値が  | いら約 1/48 に減少 | 4, 370         | 18, 341 | 176, 000 | 33~54   |  |
| 1F•2F | 0.1 | 42~512    | 42~508    | 42~358       | 41~            | 44~     | 117~     |         |  |
| 周辺    | 31  | 今期最大値は事   | 故直後の最大値か  | ら約 1/114 に減少 | 936            | 2, 547  | 58, 454  |         |  |
| 比較対   | 2   | 46~106    | 47~105    | 47~103       | 45~            | 61~     | 181~     | 20 - 49 |  |
| 照地点   | 3   | 今期最大値は事   | は直後の最大値が  | ら約 1/35 に減少  | 119            | 220     | 3, 716   | 39~42   |  |

(注) \*1 R2~: 令和2年度第1四半期から前四半期まで。(次項以降も同じ)

H26~: 平成26年度から令和元年度第4四半期まで。(次項以降も同じ)

事故直後:事故後(平成23年3月11日以降)から平成25年度まで。(次項以降も同じ)

事故前:平成13年度から事故前(平成23年3月10日以前)まで。

なお、測定地点数は年度により異なる。

# イ 1時間値の変動状況

各測定地点における1時間値の変動は、降雨雪による自然放射線レベルの変動\*があるものの、 新たな原子力発電所等に由来する影響※はありませんでした。

(注)※については、用語の解説 (9~12ページ) を参照してください。

各地点の空間線量率 (ガンマ線) の最大値 (1時間値) (単位:nGy/h)

|       |      |                              |           |             |        |         |             | •     |
|-------|------|------------------------------|-----------|-------------|--------|---------|-------------|-------|
| 測定 測定 | 測定   | 各地点の最大値の範囲                   |           |             | 過去の最大値 |         |             |       |
| エリア   | 地点数  | 10 月                         | 11月       | 12 月        | R2∼    | H26∼    | 事故直後        | 事故前*1 |
| 1F    | 0    | 234~3,730                    | 230~3,730 | 241~3,690   | 4 F00  | 10 570  | 1 018 174   |       |
| 近傍    | 近傍 8 | 今期最大値は事故直後の最大値から約 1/273 に減少  |           |             | 4, 500 | 18, 578 | 1, 018, 174 | 157   |
| 1F•2F | 0.1  | 56~523                       | 56~523    | 68~378      | 000    | 9 674   | 1 501 000   | 157   |
| 周辺    | 31   | 今期最大値は事故直後の最大値から約 1/3042 に減少 |           |             | 988    | 2, 674  | 1, 591, 066 |       |
| 比較対   | † ]  | 63~121                       | 79~144    | 81~125      | 1.46   | 999     | 0.056       | 00    |
| 照地点   | į 3  | 3 今期最大値は事故直後                 |           | っ約 1/69 に減少 | 146    | 232     | 9, 956      | 88    |

(注) \*1 事故前:平成13年度から事故前(平成23年3月10日以前)まで。

なお、測定地点数は年度により異なる。

# (2) 中性子線

1F 近傍で2 地点、1F・2F 周辺で1 地点、計3 地点で空間線量率(中性子線)を常時測定しまし た。各測定地点における月間平均値(3~4 nSv/h)は、事故前の県内の測定結果\*1と同程度\*であ り、中性子線量率の異常は確認されませんでした。詳細な測定値は42ページ参照。

※1 環境における中性子線量率の測定結果 (平成14年度文部科学省実施): 4.6~14 nSv/h

県内 5 地点(福島市、猪苗代町、西会津町、いわき市)において、サーベイメータ型レムカウンタ(直径 2インチ5気圧 ³He 比例計数管) を使用し、地表面より約 1m の高さで測定。

URL:https://www.kankyo-hoshano.go.jp/ (環境放射線データベース)

URL:https://www.kankyo-hoshano.go.jp/wp-content/themes/jcac/pdf/ers\_abs45.pdf (「第 45 回環境放 射能調査研究成果論文抄録集(平成 14 年度)文部科学省」I-20 環境における中性子線量率の全国調査)

(注)※については、用語の解説 (9~12ページ) を参照してください。

### 4-1-2 空間積算線量

1F 近傍で7地点、1F・2F 周辺で57地点、計64地点で蛍光ガラス線量計(RPLD)により空気中 の放射線量を測定しました。詳細な測定値は43~45ページを参照。

90 日換算値は、事故の影響により事故前の測定値を上回っていますが、年月の経過とともに減少 する傾向にありました。

空間積算線量の90日換算値

(単位:mGy/90日)

| 測定 測定 |     | 測定値                                   | 過去の測定値 |       |         |       |  |  |
|-------|-----|---------------------------------------|--------|-------|---------|-------|--|--|
| エリア   | 地点数 | (令和 5 年 10 月 5 日~<br>令和 6 年 1 月 11 日) | R2~    | H26∼  | 事故直後    | 事故前*1 |  |  |
| 1F    | 7   | 0.49~5.6                              | 0.49~  | 0.76~ | 2.38~   |       |  |  |
| 近傍    | 1   | 今期最大値は事故直後の最大値から約 1/25 に減少            | 16     | 45    | 137. 79 | 0.10~ |  |  |
| 1F•2F | 57  | 0.15~9.6                              | 0.15~  | 0.15~ | 0.18~   | 0.14  |  |  |
| 周辺    | 57  | 今期最大値は事故直後の最大値から約 1/4 に減少             | 12     | 31    | 35. 84  |       |  |  |

(注) \*1 事故前: 事故前から測定していた20地点における平成15年度第1四半期から平成22年度第3四半期まで。

## 4-2 環境試料

## 4-2-1 大気浮遊じんの全アルファ放射能及び全ベータ放射能

# (1) 6時間連続集じん・6時間放置後測定

1F 近傍で3地点、1F・2F 周辺で14地点、計17地点で6時間連続集じん・6時間放置後の全アルファ放射能及び全ベータ放射能を測定しました。詳細な測定値は46~47ページを参照。

## ア 月間平均値

全アルファ放射能及び全ベータ放射能の月間平均値は、原子力発電所からの距離に関係なく、 いずれの月も事故前の月間平均値とほぼ同程度でした。

(注) ※については、用語の解説 (9~12ページ) を参照してください。

各地点の大気浮遊じんの月間平均値 (単位:Bq/m³)

| 測定項目      | 測定    | 測定  | 各地点の月間平均値の範囲 |        |        | 過去の月間平均値 |        |        |        |
|-----------|-------|-----|--------------|--------|--------|----------|--------|--------|--------|
| 例足項目      | エリア   | 地点数 | 10 月         | 11 月   | 12 月   | R2∼*2    | H26∼   | 事故直後   | 事故前*1  |
| _         | 1F    | 3   | 0.013~       | 0.013~ | 0.009~ | 0.005~   | 0.004~ | 0.007~ |        |
| 全<br>アルファ | 近傍    | J   | 0.029        | 0.040  | 0.026  | 0.048    | 0.059  | 0.039  | 0.007~ |
| 放射能       | 1F•2F | 14  | 0.008~       | 0.011~ | 0.009~ | 0.002~   | 0.003~ | 0.009~ | 0.076  |
| //X/1 HE  | 周辺    | 14  | 0.049        | 0.052  | 0.039  | 0.064    | 0.088  | 0.046  |        |
| _         | 1F    | 3   | 0.045~       | 0.045~ | 0.035~ | 0.021~   | 0.022~ | 0.025~ |        |
| 全ベータ      | 近傍    | J   | 0.11         | 0.14   | 0.10   | 0.16     | 0.16   | 0. 22  | 0.018~ |
| 放射能       | 1F•2F | 14  | 0.027~       | 0.030~ | 0.030~ | 0.020~   | 0.017~ | 0.030~ | 0.12   |
| ///// HE  | 周辺    | 14  | 0.080        | 0. 10  | 0.073  | 0. 12    | 0. 13  | 2.0    |        |

<sup>(</sup>注) \*1 事故前: 平成13年9月から事故前(平成23年3月10日以前)まで。

## イ 変動状況

全アルファ放射能及び全ベータ放射能の最大値は事故前の最大値と同程度\*でした。また、空間線量率の高低にかかわらず、全アルファ放射能及び全ベータ放射能に強い相関が見られていることから、これらの変動は、全アルファ放射能及び全ベータ放射能の相関関係\*による自然放射能レベルの変動と考えられました。巻末のグラフ集(141~149 ページ)に相関図を示しております。

(注)※については、用語の解説 (9~12ページ) を参照してください。

<sup>\*2</sup> 大熊町大野の地点は、令和元年度末に局舎を移設したため、令和2年度第1四半期から採取地点を旧大熊町役場敷地内に変更。

(単位: Bq/m³)

|           |             |     | д 2//          | 1.5 \ ()((1) × | =              | 7 1111 |       | (     === : | 1/ /  |  |
|-----------|-------------|-----|----------------|----------------|----------------|--------|-------|-------------|-------|--|
| 測定項目      | 測定          | 測定  | 各地点            | 京の最大値の         | の範囲            | 過去の最大値 |       |             |       |  |
| 側足切目      | エリア         | 地点数 | 10 月           | 11 月           | 12 月           | R2∼*2  | H26∼  | 事故直後        | 事故前*1 |  |
| 全<br>アルファ | 1F<br>近傍    | 3   | 0.042~<br>0.16 | 0.055~<br>0.24 | 0.024~<br>0.11 | 0. 31  | 0. 21 | 0. 19       | 0.58  |  |
| 放射能       | 1F•2F<br>周辺 | 14  | 0.020~<br>0.21 | 0.055~<br>0.26 | 0.049~<br>0.20 | 0. 38  | 0. 42 | 0. 34       | 0.38  |  |
| 全<br>ベータ  | 1F<br>近傍    | 3   | 0.11~<br>0.48  | 0.13~<br>0.69  | 0.074~<br>0.34 | 0. 97  | 0.62  | 1.3         | 0.78  |  |
| 放射能       | 1F·2F<br>周辺 | 14  | 0.045~<br>0.42 | 0.093~<br>0.64 | 0.085~<br>0.28 | 0. 77  | 0.71  | 54          | 0.78  |  |

- (注) \*1 事故前: 平成13年9月から事故前(平成23年3月10日以前)まで。
  - \*2 大熊町大野の地点は、令和元年度末に局舎を移設したため、令和2年度第1四半期から採取地点を旧大熊町役場敷地内に変更。

# (2) 集じん中測定

1F 近傍で 6 地点、1F・2F 周辺で 20 地点、計 26 地点で集じん中の全アルファ放射能及び全ベータ放射能を測定しました。各測定地点における放射能濃度の変動は、ろ紙送り直後や放射能濃度が低い場合\*\*を除き、全ベータ放射能を全アルファ放射能で除した比( $\beta/\alpha$  比)がほぼ一定であることから、自然放射能レベルの変動と考えられました。巻末のグラフ集(150~162 ページ)に全アルファ放射能及び全ベータ放射能の推移を示しております。

※ ろ紙送り直後のデータは、大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べ高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低い場合は、放射線の計数が小さいことから $\beta/\alpha$  比のばらつきが大きくなる場合があるとされています。(放射能測定法シリーズ No. 36「大気中放射性物質測定法」より)

#### 4-2-2 環境試料の核種濃度(ガンマ線放出核種)

今期に測定した環境試料は、大気浮遊じんが 49 地点 144 試料、降下物が 12 地点 36 試料、土壌が 15 地点 15 試料、上水が 13 地点 13 試料、海水が 11 地点 29 試料、海底土が 8 地点 8 試料、松葉が 20 地点 20 試料の 7 品目で合計 264 試料でした。詳細な測定値は 49~53、56~61 ページを参照。

大気浮遊じん及び上水を除く 5 品目の 35 試料からセシウム-134 が、全 7 品目の 192 試料からセシウム-137 が検出され、そのうち、事故前の測定値を上回った試料は、セシウム-134 が 35 試料、セシウム-137 が 189 試料でした。事故の影響により多くの試料で事故前の測定値を上回りましたが、事故直後と比較すると大幅に低下しており、令和 2 年度以降の測定値とほぼ同程度でした。

上水の一部(水源は表流水)からセシウム-137 が検出( $0.003\sim0.034~Bq/L$ )されています。この値は、食品中の放射性セシウムの基準値のうち、飲料水の基準値 $^*$ である 10~Bq/kg(10~Bq/L)を大きく下回っています。

(注) ※については、用語の解説 (9~12ページ) を参照してください。

環境試料のガンマ線放出核種濃度

| 4 lok 45                | 14-75  |          | 地点 |            |          | 過去の測定値    |                                                                     |              |  |  |
|-------------------------|--------|----------|----|------------|----------|-----------|---------------------------------------------------------------------|--------------|--|--|
| 試 料 名                   | 核種     | 採取エリア    | 数  | 測定値        | R2~*2,*3 | H26∼      | 事故直後                                                                | 事故前*1        |  |  |
|                         |        | 1F 近傍    | 7  | ND         | ND~0.094 | ND~1.8    | 0.072~38                                                            | MD           |  |  |
|                         | Cs-134 | 1F・2F 周辺 | 35 | ND         | ND~0.007 | ND~0.65   | ND~1, 100                                                           | ND ND        |  |  |
| 大気浮遊                    |        | 比較対照地点   | 7  | ND         | ND       | ND∼0.13   | ND~8.2                                                              | _            |  |  |
| じん(mBq/m³)              |        | 1F 近傍    | 7  | 0.022~0.40 | ND∼1.6   | ND~5.2    | 0.14~39                                                             | MD           |  |  |
|                         | Cs-137 | 1F·2F 周辺 | 35 | ND∼0.38    | ND∼0.23  | ND~2.1    | ND~990                                                              | ND           |  |  |
|                         |        | 比較対照地点   | 7  | ND~0.11    | ND∼0.28  | ND~0.45   | ND~10                                                               | _            |  |  |
|                         |        | 1F 近傍    | 2  | ND         | ND       | ND∼0.54   | ND                                                                  | MD           |  |  |
|                         | Co-60  | 1F·2F 周辺 | 8  | ND         | ND       | ND        | ND                                                                  | ND           |  |  |
|                         |        | 比較対照地点   | 2  | ND         | ND       | ND        | ND                                                                  | ND           |  |  |
|                         |        | 1F 近傍    | 2  | ND         | ND~0.45  | ND~2.0    | ND                                                                  |              |  |  |
|                         | Sb-125 | 1F・2F 周辺 | 8  | ND         | ND∼3.1   | ND        | ND                                                                  | ND           |  |  |
|                         |        | 比較対照地点   | 2  | ND         | ND       | ND        | ND                                                                  |              |  |  |
| 1/2 T 4/m               | Cs-134 | 1F 近傍    | 2  | 0.27~2.4   | 0.18~26  | ND~1, 200 | $\sim 1,200$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | ND           |  |  |
| 降 下 物<br>(Bq/m²         |        | 1F·2F 周辺 | 8  | ND         | ND~4.2   | ND~110    | ND~<br>940,000                                                      | ND           |  |  |
| (MBq/km <sup>2</sup> )) |        | 比較対照地点   | 2  | ND~0.094   | ND~1.6   | ND~180    | ND~<br>140,000                                                      | ND           |  |  |
|                         |        | 1F 近傍    | 2  | 16~130     | 7.7~460  | 17~4,300  | 170~<br>5,600,000                                                   | ND∼0.15      |  |  |
|                         | Cs-137 | 1F•2F 周辺 | 8  | 0.50~12    | 0.24~72  | ND~670    | ND~<br>1,000,000                                                    | ND ~ 0. 15   |  |  |
|                         |        | 比較対照地点   | 2  | 0.15~4.7   | 0.084~36 | ND~620    | ND~<br>150,000                                                      | ND~<br>0.093 |  |  |
| 1 1-4-                  |        | 1F 近傍    | 2  | ND         | ND~2.9   | ND~5.3    | ND                                                                  | MD           |  |  |
| 土 壌                     | Co-60  | 1F·2F 周辺 | 13 | ND         | ND       | ND~1.9    | ND                                                                  | ND           |  |  |
| (Bq/kg 乾<br>(事故直後及び     |        | 比較対照地点   | 7  | ND         | ND       | ND        | ND                                                                  | ND           |  |  |
| (事成直接及び<br>H26~H27 は    |        | 1F 近傍    | 2  | ND         | ND       | ND~130    | ND                                                                  | MD           |  |  |
| Bq/kg湿))                | Sb-125 | 1F・2F 周辺 | 13 | ND         | ND       | ND        | ND                                                                  | ND           |  |  |
| ρ4/ ng 13k//            |        | 比較対照地点   | 7  | ND         | ND~10    | ND~28     | ND                                                                  | ND           |  |  |

### (注)「一」は測定値なし。

- \*1 事故前:平成13年度から事故前(平成23年3月10日以前)まで。
- \*2 大気浮遊じんの 1F 近傍の大熊町大野の地点は、令和元年度末に局舎を移設したため、令和 2 年度から採取地点を旧大熊町役場敷地内に変更。
- \*3 土壌の1F近傍の大熊町夫沢の地点は、中間貯蔵施設工事により採取不可能になったため、令和2年度第3四半期から採取地点を大熊町小入野に変更。

| 4 IN 4=              | H-任    | 松下一儿マ             | 地点 | >=u ← / <del>/ / ·</del> |                      | 過去の                | 測定値                 |              |
|----------------------|--------|-------------------|----|--------------------------|----------------------|--------------------|---------------------|--------------|
| 試 料 名                | 核種     | 採取エリア             | 数  | 測定値                      | R2~*2, 4, 5          | H26∼*³             | 事故直後                | 事故前*1        |
|                      |        | 1F 近傍             | 2  | 510~6,000                | 800~<br>20,000       | 3,900~<br>49,000   | 2,700~<br>230,000   | MD           |
| 土 壌                  | Cs-134 | 1F・2F 周辺          | 13 | ND∼110                   | ND~2, 200            | 3.1~<br>7,800      | 32~12,000           | ND           |
| (Bq/kg 乾             |        | 比較対照地点            | 7  | _                        | ND~270               | 5.0~690            | 14~9, 200           | ND           |
| (事故直後及び<br>H26~H27 は |        | 1F 近傍             | 2  | 27, 000~<br>320, 000     | 25, 000~<br>400, 000 | 20,000~<br>330,000 | 3, 100~<br>310, 000 |              |
| Bq/kg 湿))            | Cs-137 | 1F·2F 周辺          | 13 | 32~6,000                 | 7.7~<br>28,000       | 27~<br>52,000      | 75~26, 000          | ND~16        |
|                      |        | 比較対照地点            | 7  | _                        | 33~3,600             | 37~4,500           | 18~14,000           | ND~30        |
|                      |        | 1F 近傍             | 1  | ND                       | ND                   | ND                 | _                   | MD           |
|                      | Cs-134 | 1F·2F 周辺          | 12 | ND                       | ND~0.001             | ND~0.062           | ND∼0.17             | ND           |
| 上 水                  |        | 比較対照地点            | 2  | =                        | ND                   | ND~0.002           | ND                  | ND           |
| ( B q / L )          | Cs-137 | 1F 近傍             | 1  | ND                       | ND~0.002             | ND~0.003           | ~0.003 -            | NID          |
|                      |        | 7 1F·2F 周辺        | 12 | ND~0.034                 | ND~0.043             | ND∼0.18            | ND~0.29             | ND           |
|                      |        | 比較対照地点            | 2  | _                        | ND~0.002             | ND~0.011           | ND                  | ND           |
|                      | Cs-134 | 1F 放取水口           | 3  | ND~0.003                 | ND~0.010             | ND~0.35            | ND~2.4              | ND           |
|                      |        | 1F 沖合             | 3  | ND                       | ND                   | ND~0.067           | ND~0.094            |              |
|                      |        | ALPS 処理水放出<br>口周辺 | 3  | ND                       | ND                   | _                  |                     |              |
|                      |        | 2F 放水口            | 2  | ND                       | ND                   | ND~0.012           | ND∼0.20             |              |
|                      |        | 松川浦               | 1  | _                        | ND                   | ND~0.005           | ND                  | ND           |
| 海水                   |        | 1F 放取水口           | 3  | 0.011~<br>0.12           | 0.003~<br>0.31       | ND~1.1             | ND~5.0              |              |
| ( B q / L )          |        | 1F 沖合             | 3  | 0.006~<br>0.012          | 0.002~<br>0.023      | ND~0.31            | ND~0.19             | ND $\sim$    |
|                      | Cs-137 | ALPS 処理水放出<br>口周辺 | 3  | 0.007~<br>0.029          | 0.003~<br>0.033      | _                  | -                   | 0.003        |
|                      |        | 2F 放水口            | 2  | 0.012~<br>0.032          | 0.005~<br>0.040      | ND∼0.12            | 0.12~0.42           |              |
|                      |        | 松川浦               | 1  | _                        | 0.005~<br>0.020      | ND~0.028           | ND                  | ND~<br>0.002 |

- (注)「一」は測定値なし。
  - \*1 事故前:平成13年度から事故前(平成23年3月10日以前)まで。
  - \*2 土壌の 1F 近傍の大熊町夫沢の地点は、中間貯蔵施設工事により採取不可能になったため、令和 2 年度第 3 四半期から採取地点を大熊町小入野に変更。
  - \*3 上水の1F・2F周辺の大熊町の地点は令和元年度から再開。
  - \*4 上水の1F近傍の双葉町の地点は令和2年度第3四半期から再開。
  - \*5 海水のALPS 処理水放出口周辺の測点は、令和4年度から測定を実施。

| t 10k 45       | 1+1+   | があっリフ    | 地点 | 油砂盘      |         | 過去の      | 測定値             |         |
|----------------|--------|----------|----|----------|---------|----------|-----------------|---------|
| 試 料 名          | 核種     | 採取エリア    | 数  | 測定値      | R2∼     | H26∼     | 事故直後            | 事故前*1   |
|                |        | 1F 放取水口  | 3  | ND       | ND      | ND~1.1   | ND~1.3          |         |
|                | М. Г4  | 1F 沖合    | 3  | ND       | ND      | ND       | ND~0.62         | ND      |
|                | Mn-54  | 2F 放水口   | 2  | ND       | ND      | ND       | ND              |         |
|                |        | 松川浦      | 1  | _        | ND      | ND       | ND              | ND      |
|                |        | 1F 放取水口  | 3  | ND       | ND      | ND~1.0   | ND~1.3          |         |
|                | Co-60  | 1F 沖合    | 3  | ND       | ND      | ND       | ND              | ND      |
|                | CO 00  | 2F 放水口   | 2  | ND       | ND      | ND       | ND              |         |
| 海底土            |        | 松川浦      | 1  |          | ND      | ND       | ND              | ND      |
| (Bq/kg 乾)      |        | 1F 放取水口  | 3  | 3.4~4.0  | 3.1~17  | 8.7~320  | 120~450         | ND      |
|                | Cs-134 | 1F 沖合    | 3  | ND       | ND~13   | ND~130   | 25~72           |         |
|                |        | 2F 放水口   | 2  | ND       | ND~6.9  | 3.0~68   | 47~230          |         |
|                |        | 松川浦      | 1  | _        | ND      | ND~4.4   | 1.3             | ND      |
|                | Cs-137 | 1F 放取水口  | 3  | 170~180  | 140~350 | 140~870  | 230~1,000       |         |
|                |        | 1F 沖合    | 3  | 23~31    | 20~240  | 17~630   | 61~170          | ND∼0.97 |
|                |        | 2F 放水口   | 2  | 28~55    | 34~120  | 50~200   | 100~470         |         |
|                |        | 松川浦      | 1  | _        | 2.6~6.6 | 1.8~13   | 2.6             | ND~2.3  |
|                |        | 1F 近傍    | 2  | ND       | ND      | ND       | ND~380          | ND      |
|                | I-131  | 1F・2F 周辺 | 13 | ND       | ND      | ND       | ND              | ND      |
|                |        | 比較対照地点   | 5  | ND       | ND      | ND       | ND              | _       |
|                |        | lF 近傍    | 2  | 1.6~6.1  | 2.6~26  | 7.2~     | 740~            | ND      |
| 松葉             | Cs-134 | 11 21/3  | 2  | 1.0 -0.1 | 2.0 -20 | 1, 200   | 210,000         | ND      |
| (Bq/kg 生)      | 05 104 | 1F·2F 周辺 | 13 | ND∼2.3   | ND∼17   | ND∼280   | ND~61,000       | ND      |
| (D4/ 118 - 17) |        | 比較対照地点   | 5  | ND       | ND∼0.20 | ND∼91    | ND~33, 000      | _       |
|                |        | 1F 近傍    | 2  | 89~320   | 84~550  | 99~6,100 | 1,900~          |         |
|                | Cs-137 | 11 / 1/7 |    | 00 020   | 01 000  | 0,100    | 230, 000 ND~1.2 | ND∼1.2  |
|                | 05 101 | 1F·2F 周辺 | 13 | 0.76~110 | ND~330  | ND~910   | ND~68, 000      |         |
|                |        | 比較対照地点   | 5  | ND∼2.1   | ND∼4.8  | ND~290   | ND~52, 000      | _       |

<sup>(</sup>注)「一」は測定値なし。

<sup>\*1</sup> 事故前:平成13年度から事故前(平成23年3月10日以前)まで。

# 4-2-3 環境試料の核種濃度(ベータ線放出核種)

## (1) 今期分

海水 11 地点 29 試料について、全ベータ放射能を調査した結果、事故前の測定値  $(ND\sim0.05$  Bq/L) と同程度\*\*でした。詳細な測定値は  $70\sim73$  ページを参照。

大気中水分 6 地点 18 試料、上水 13 地点 13 試料、海水 11 地点 29 試料の合計 60 試料について、トリチウムを調査した結果、大気中水分 6 地点 13 試料、上水 3 地点 3 試料、海水 9 地点 24 試料から検出されました。大気中水分、上水及び海水のトリチウムの測定値は、事故前の測定値(大気中水分:  $ND\sim23~mBq/m^3$ 、上水:  $ND\sim1.3~Bq/L$ 、海水:  $ND\sim2.9~Bq/L$ )と同程度\*でした。詳細な測定値は  $61\sim63$ 、 $69\sim73~\sim$ -ジを参照。

海水 9 地点 27 試料、海底土 6 地点 6 試料について、ストロンチウム-90 を調査した結果、海水 9 地点 25 試料から検出されました。海水のストロンチウム-90 の測定値は、事故前の測定値(ND~0.002 Bq/L)を上回りましたが、令和 2 年度以降の測定値(ND~0.035 Bq/L)と同程度\*でした。 詳細な測定値は  $70\sim74$  ページを参照。

ALPS 処理水の海洋放出後に開始した速報のためのトリチウムの迅速分析については、令和5年10月8日から令和5年12月20日までに実施した結果は、全て検出下限値未満でした。詳細は76ページを参照。

## (2) 令和5年度第2四半期分

調査中であった上水 3 地点 3 試料を含めた令和 5 年度第 2 四半期の上水 14 地点 14 試料について、ストロンチウム-90 を調査した結果、9 地点 9 試料から検出されました。上水のストロンチウム-90 の測定値は、事故前の測定値(0.001~0.002 Bq/L)と同程度 $^*$ でした。詳細な測定値は 69 ページを参照。

(注) ※については、用語の解説 (9~12ページ) を参照してください。

採取 過去の測定値 試 料 名 核種 地点数 測定値 エリア  $R2 \sim^{*4}$  $H26^{*2,3}$ ~ 事故直後 事故前\*1 1F 近傍  $ND\sim21$  $ND \sim 70$ 3  $ND\sim64$  $ND\sim23$ 大気中 1F·2F 周辺  $ND \sim 3.8$  $ND\sim14$  $ND\sim14$  $ND\sim14$ H-3 2 水 分  $(mBq/m^3)$ 比較対照地点 1  $ND\sim2.5$  $ND\sim12$  $ND\sim21$  $ND\sim41$  $ND\sim12$ 1F 近傍  $ND \sim 0.48$ 1 ND $ND \sim 0.47$  $ND\sim1.2$ 上 カヒ H-31F・2F 周辺 12  $ND \sim 0.59$  $ND \sim 0.60$  $ND \sim 0.94$  $ND \sim 0.96$ (Bq/L) 比較対照地点 2  $ND \sim 0.46$  $ND \sim 0.85$  $ND \sim 1.4$  $ND \sim 1.3$ 

環境試料のベータ線放出核種濃度

#### (注)「一」は測定値なし。

- \*1 事故前: 平成13年度から事故前(平成23年3月10日以前)まで。
- \*2 大気中水分の1F近傍、1F·2F周辺は平成30年度から再開。
- \*3 上水の1F・2F周辺の大熊町の地点は令和元年度から再開。
- \*4 上水の1F近傍の双葉町の地点は令和2年度第3四半期から再開。

| = 10\ A =   | 上任       | 採取                | III. ₩¥/. | Sir       |           |                   | 過去の               | 測定値             |                 |
|-------------|----------|-------------------|-----------|-----------|-----------|-------------------|-------------------|-----------------|-----------------|
| 試料名         | 核種       | エリア               | 地点数       | Į.        | 則定値       | R2∼*³, 4          | H26∼              | 事故直後            | 事故前*1,2         |
|             |          | 1F 放取水口           | 3         | 0.0       | 1~0.02    | ND~0.07           | ND∼0.38           | 0.02~1.7        |                 |
|             |          | 1F 沖合             | 3         |           | 0.02      | ND~0.07           | ND~0.05           | ND~0.14         |                 |
|             | 全べ<br>ータ | ALPS 処理水<br>放出口周辺 | 3         | 0.0       | 01~0.02   | 0.01~<br>0.03     | 1                 | _               | ND~0.05         |
|             | 放射<br>能  | 2F 放水口            | 2         | 0.0       | 01~0.02   | 0.01~<br>0.07     | 0.01~<br>0.06     | 0.02~0.05       |                 |
|             |          | 松川浦               | 1         |           | _         | 0.04~<br>0.06     | 0.02~<br>0.06     | 0.02            | ND~0.03         |
|             |          | 1F 放取水口           | 3         | 減圧 蒸留法    | _         | ND~1.4            | ND~2.6            | ND∼6. 2         |                 |
|             |          |                   | 3         | 電解<br>濃縮法 | 0.06~0.49 | ND∼0.66           | _                 | _               |                 |
|             |          | 1F 沖合             | 3         | 減圧<br>蒸留法 | _         | ND∼0.41           | ND∼0.91           | ND∼0.58         |                 |
| 海水          | H-3      | 11. 任日            | 3         | 電解 濃縮法    | ND∼0.44   | ND~0.63           | _                 | _               | ND∼2.9          |
| 伊<br>(Bq/L) |          | ALPS 処理水          | 3         | 減圧<br>蒸留法 | _         | ND                | _                 | _               |                 |
|             |          | 放出口周辺             | 3         | 電解<br>濃縮法 | ND~1.6    | ND∼0.13           | _                 | _               |                 |
|             |          | 2F 放水口            | 2         | 減圧<br>蒸留法 | ND        | ND                | ND~0.86           | ND∼0.56         |                 |
|             |          | 松川浦               | 1         | 減圧<br>蒸留法 | _         | ND~0.37           | ND                | ND              | ND~0.46         |
|             |          | 1F 放<br>取水口       | 3         | 0.000     | 5∼0.0032  | ND~0.035          | ND~0.76           | 0.005~2.9       |                 |
|             |          | 1F 沖合             | 3         | ND~       | ~0.0010   | ND~<br>0.0016     | ND~0.031          | 0.001~0.26      | ND~             |
|             | Sr-90    | ALPS 処理水<br>放出口周辺 | 3         | ND~       | ~0.0012   | ND∼<br>0.0013     | _                 | _               | 0.002           |
|             |          | 2F 放水口            | 2         |           | _         | 0.0007~<br>0.0009 | 0.0008~<br>0.0030 | 0.033~<br>0.034 |                 |
|             |          | 松川浦               | 1         |           | _         | 0.0009~<br>0.0018 | 0.0010~<br>0.0011 | 0.001           | 0.001~<br>0.002 |
| 海底土         |          | 1F 放取水口           | 3         |           | ND        | ND∼0.51           | ND~4.6            | ND∼1.2          |                 |
| (Bq/kg      | Sr-      | 1F 沖合             | 3         |           | ND        | ND∼0.28           | ND∼0.71           | ND∼0.19         | ND              |
| 乾 )         | 90       | 2F 放水口            | 2         |           | _         | ND∼0.21           | ND∼0.32           | ND∼0. 21        |                 |
| , ,         |          | 松川浦               | 1         |           | _         | ND∼0.28           | ND∼0.21           | ND              | ND~0.02         |

#### (注)「一」は測定値なし。

- \*1 事故前:平成13年度から事故前(平成23年3月10日以前)まで。
- \*2 事故前の海水の H-3 の測定は、減圧蒸留法による。(検出下限値:約0.3~0.5 Bq/L)
- \*3 海水の ALPS 処理水放出口周辺の測点は、令和 4 年度から測定を実施。
- \*4 海水の 1F 放取水口、1F 沖合及び ALPS 処理水放出口周辺の H-3 は令和 4 年度から電解濃縮法による測定を実施。 (検出下限値:  $0.03\sim0.06$  Bq/L)

速報のためのトリチウム迅速分析結果(令和5年10月8日~令和5年12月20日実施分)

| 試 料 名  | 核種  | 採取                | 地点数 | 測定値 |     | 過去の  | 測定値  |     |
|--------|-----|-------------------|-----|-----|-----|------|------|-----|
| 武 村 石  | 炒性  | エリア               | 地思剱 | 例是個 | R2∼ | H26∼ | 事故直後 | 事故前 |
|        |     | 1F 放取水口           | 3   | ND  | _   | _    | _    | _   |
| 海水     | H-3 | 1F 沖合             | 3   | ND  | _   | _    | _    | _   |
| (Bq/L) | п-э | ALPS 処理水放<br>出口周辺 | 3   | ND  |     |      | _    | _   |

(注) 速報のためのトリチウム迅速分析は、検出下限値の目標値を 10Bq/L 程度としており、当該期間の検出下限値は  $3.6\sim5.1$  Bq/L であった。

環境試料のベータ線放出核種濃度(令和5年第2四半期分)

| = | 13/ 4     | Ħ        | <b>拉廷</b> | 採取        | 11년 두 ※년 | 测点体       |             | 過去の     | 測定値       |               |
|---|-----------|----------|-----------|-----------|----------|-----------|-------------|---------|-----------|---------------|
| Ī | 式 料       | 名        | 核種        | エリア       | 地点数      | 測定値       | R2∼*³       | H26*²∼  | 事故直後      | 事故前*1         |
|   |           |          |           | 1F 近傍     | 1        | 0.0007    | ND~0.0012   | _       | _         |               |
|   | L         | <b>→</b> |           | 1F•2F 周辺  | 10       | ND $\sim$ | ND - 0 0014 | ND~     | ND~0.002  | 0.001~0.002   |
|   | E.<br>Bq/ | 水口       | Sr-90     | 11、21、月22 | 12       | 0.0009    | ND~0.0014   | 0.0020  | ND 0. 002 |               |
|   | в ц /     | L)       |           | 比較対照地点    | 1        | 0. 0010   | 0.0010~     | 0.0010~ | 0.001~    | 0.001~0.002   |
|   |           |          |           |           | 1        | 0.0010    | 0.0018      | 0.0015  | 0.002     | 0.001 - 0.002 |

#### (注)「一」は測定値なし。

- \*1 事故前:平成13年度から事故前(平成23年3月10日以前)まで。
- \*2 上水の1F・2F周辺の大熊町の地点は令和元年度から再開。
- \*3 上水の1F近傍の双葉町の地点は令和2年度第3四半期から再開

### 4-2-4 環境試料の核種濃度(アルファ線放出核種)

海水 9 地点 27 試料、海底土 6 地点 6 試料の合計 33 試料について、プルトニウム-238 を調査した 結果、プルトニウム-238 は検出されませんでした。

海水 9 地点 27 試料、海底土 6 地点 6 試料の合計 33 試料について、プルトニウム-239+240 を調査した結果、海水 3 地点 4 試料、海底土 6 地点 6 試料からプルトニウム-239+240 が検出されました。 海水及び海底土のプルトニウム-239+240 の測定値は、事故前の測定値(海水: ND $\sim$ 0.013 mBq/L、海底土: 0.13 $\sim$ 0.61 Bq/kg 乾)とほぼ同程度でした。詳細な測定値は 70 $\sim$ 74 ページを参照。

(注)※については、用語の解説 (9~12ページ) を参照してください。

## 環境試料のアルファ線放出核種濃度

| 試 料 名         | <b>拉括</b> | 採取                                     | 地点 | 测宁荷*2       |               | 過去の       | 測定値       |           |
|---------------|-----------|----------------------------------------|----|-------------|---------------|-----------|-----------|-----------|
| 試 料 名         | 核種        | エリア                                    | 数  | 測定値*2       | R2∼           | H26∼      | 事故直後      | 事故前*1     |
|               |           | 1F 放取水口                                | 3  | ND          | ND            | ND~0.010  | ND        |           |
|               |           | 1F 沖合                                  | 3  | ND          | ND            | ND        | ND        |           |
|               | Pu-238    | ALPS 処理水放出                             | 3  | MD          | MD            |           |           | _         |
|               | Pu-236    | 口周辺                                    | 3  | ND          | ND            | _         | _         |           |
|               |           | 2F 放水口                                 | 2  | 1           | ND            | ND        | ND        |           |
| 海水            |           | 松川浦                                    | 1  | 1           | ND            | ND        | ND        |           |
| ( m B q / L ) |           | 1F 放取水口                                | 3  | ND~0.018    | ND~0.019      | ND~0.016  | ND~0.014  |           |
|               |           | 1F 沖合                                  | 3  | ND~0.007    | ND~0.011      | ND~0.010  | ND~0.010  |           |
|               | Pu-       | ALPS 処理水放出                             | 3  | ND~0.010    | ND~0.008      | _         |           | ND∼0.013  |
|               | 239+240   | 口周辺                                    | ວ  | ND = 0.010  | ND 90.008     |           | _         |           |
|               |           | 2F 放水口                                 | 2  |             | ND~0.015      | ND~0.020  | ND~0.011  |           |
|               |           | 松川浦                                    | 1  |             | ND            | ND        | ND        | ND∼0.012  |
|               |           | 1F 放取水口                                | 3  | ND          | ND            | ND        | ND        |           |
|               | Pu-238    | 1F 沖合                                  | 3  | ND          | ND∼0.02       | ND~0.01   | ND~0.02   | _         |
|               | Fu-236    | 2F 放水口                                 | 2  | _           | ND            | ND        | ND        |           |
|               |           | 松川浦                                    | 1  | _           | ND            | ND        | ND        |           |
| 海 底 土         |           | 1F 放取水口                                | 3  | 0. 13~0. 26 | 0.09~0.40     | 0.09~0.43 | 0.08~0.32 |           |
| (Bq/kg 乾)     |           | 1F 沖合                                  | 3  | 0. 39~0. 44 | 0.19~0.50     | 0.21~0.61 | 0.33~0.52 | 0.15~0.61 |
|               | Pu-       | 2F 放水口                                 | 2  | _           | 0.13~0.36     | 0.14~0.31 | 0.21~0.25 | _         |
|               | 239+240   | 松川浦                                    | 1  | _           | 0.20~0.28     | 0.18~0.31 | 0. 20     | 0.13~0.40 |
|               |           | 2F 海域                                  | 1  |             | ND~0.0059     | ND        | _         | 0.0067~   |
|               |           | 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1  |             | פפטט יס - מעד | ND        |           | 0.022     |

# 

- \*1 事故前:平成13年度から事故前(平成23年3月10日以前)まで。
- \*2 海水の ALPS 処理水放出口周辺の測点は令和 4 年度から測定を実施。

第 5 原子力発電所周辺環境放射能測定值一覧表

3-1 空間放射線

単位 線量率:ncy/h 測定時間:h 上段:平均値 (下段):最大値

|               | 5-1-1(1) 空間 | 空間線量率                                 |           | ļ                     |           |      |           | ŀ                |           |                                       |           | F           |           |             |           | F           |            | -           |                     | -                                                                  |                  | , |      |   | `           |
|---------------|-------------|---------------------------------------|-----------|-----------------------|-----------|------|-----------|------------------|-----------|---------------------------------------|-----------|-------------|-----------|-------------|-----------|-------------|------------|-------------|---------------------|--------------------------------------------------------------------|------------------|---|------|---|-------------|
| /             | <b></b>     | 作<br>十<br>1                           | R5.       | 4                     | 5         |      | 9         |                  | 7         |                                       | ∞         |             | 6         |             | 10        |             | 11         |             | 12                  |                                                                    | R6. 1            |   | 2    | - | က           |
| No.           | 測定地点名       | 測定項目                                  | 機         | 開<br>記<br>記<br>記<br>記 | 場<br>母    | 測定時間 | 事         | 無<br>三<br>三<br>三 | 機         | 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 | 機         | 無<br>開<br>調 | 機         | 事<br>言<br>言 | <b>藤</b>  | 事<br>言<br>言 | 機          | 無<br>時<br>間 | 線量 測定率 時間           | を<br>を<br>を<br>を<br>を<br>を<br>を<br>を<br>を<br>を<br>を<br>を<br>を<br>を | )<br>中<br>門<br>門 | 機 | 測定時間 | 機 | 事<br>記<br>記 |
|               | いわき市 小      | # E                                   | 50 (64)   | 720                   | 47 (60)   | 744  | 46 (61)   | 720              | 47 (70)   | 744                                   | 45 (54)   | 744         | 49 (65)   | 714         | 51 (60)   | 26          | 48 (56)    | 250         | 49<br>744<br>(70)   |                                                                    |                  |   |      |   |             |
| _ <i>&gt;</i> | いわき市 清      | *2                                    |           |                       |           |      |           |                  |           |                                       |           |             | 52 (56)   | 35          | 52 (67)   | 744         | 51 (69)    | 514         |                     |                                                                    |                  |   |      |   |             |
| 2 1           | いわき市 🌣 🏄    | e<br>大<br>***                         | 79 (93)   | 720                   | (63)      | 744  | 78 (95)   | 720              | 79 (101)  | 744                                   | 62        | 744         | (96)      | 720         | 78 (94)   | 738         | 80 (102)   | 720         | 79 744 (101)        |                                                                    |                  |   |      |   |             |
| 3             | いわき市 卡      | *<br>*<br>*<br>*<br>完                 | 49 (62)   | 720                   | 48 (66)   | 744  | 48 (66)   | 720              | 49 (70)   | 744                                   | 48 (71)   | 744         | 49 (63)   | 720         | 48 (60)   | 739         | 47 (69)    | 720         | 47 744 (80)         |                                                                    |                  |   |      |   |             |
| 4 1           | いわき市 淵 ‡    | # # # # # # # # # # # # # # # # # # # | 62 (78)   | 720                   | 61 (77)   | 744  | 61 (75)   | 720              | 62 (87)   | 744                                   | 62 (73)   | 744         | 62 (75)   | 720         | 62 (73)   | 738         | 61 (80)    | 720         | 61<br>(92)          |                                                                    |                  |   |      |   |             |
|               | 田村市都路       | 5馬洗戸                                  | (80)      | 720                   | 69 (84)   | 744  | 69 (82)   | 720              | 70 (93)   | 744                                   | 69        | 742         | 70 (88)   | 714         | 70 (81)   | 80          | 67 (85)    | 177         | 66<br>744<br>(95)   |                                                                    |                  |   |      |   |             |
| o .           | 田村市 都路      | actosment *2<br>路馬洗戸*2                |           |                       |           |      |           |                  |           |                                       |           |             | 75 (79)   | 34          | 75 (84)   | 744         | 74 (98)    | 632         |                     |                                                                    |                  |   |      |   |             |
| 9             | 広野町 📑       | a<br>**語                              | 71 (89)   | 720                   | 71 (90)   | 744  | 71 (94)   | 720              | 71 (113)  | 744                                   | 70 (88)   | 744         | 68 (94)   | 720         | 71 (90)   | 744         | 71 (90)    | 720         | 71 738 (106)        |                                                                    |                  |   |      |   |             |
|               | 広野町 🍈       | ·<br>注<br>:<br>:                      | (82)      | 720                   | 68        | 744  | (85)      | 720              | (92)      | 744                                   | 69 (92)   | 744         | (96)      | 720         | (96)      | 740         | 67 (84)    | 089         | 0<br>               |                                                                    |                  |   |      |   |             |
| _             | 広野町 「「「」    | 海 下 *2                                |           |                       |           |      |           |                  |           |                                       |           |             |           |             |           |             | 66 (72)    | 205         | 66<br>744<br>(98)   |                                                                    |                  |   |      |   |             |
| ∞             | 楢葉町 は *     | · <u>国</u><br>**                      | 69        | 720                   | 69        | 744  | 69        | 720              | 69 (109)  | 744                                   | 68 (85)   | 744         | 69 (63)   | 714         | 69 (83)   | 744         | (96)<br>69 | 720         | 69<br>744<br>(106)  |                                                                    |                  |   |      |   |             |
| 6             | 楢葉町 * デ     | A K H                                 | 59 (78)   | 720                   | 09        | 744  | 09        | 720              | 61 (95)   | 744                                   | (89)      | 744         | 09        | 720         | (62)      | 738         | 60 (82)    | 720         | 60<br>744<br>(96)   |                                                                    |                  |   |      |   |             |
| 10            | 楢葉町繁        | #<br>#<br>#                           | 97 (111)  | 720                   | 97 (115)  | 744  | 96 (115)  | 720              | 97 (147)  | 744                                   | 94 (106)  | 744         | 91 (110)  | 714         | 93 (114)  | 744         | 94 (119)   | 720         | 94 744              |                                                                    |                  |   |      |   |             |
| 11            | 楢葉町 松 *     | · 提                                   | 118 (132) | 720                   | 118 (133) | 744  | 116 (132) | 720              | 117 (157) | 744                                   | 117 (126) | 744         | 116 (150) | 714         | 116 (142) | 744         | 116 (135)  | 720         | 115 744 (150)       |                                                                    |                  |   |      |   |             |
| 12            | 楢葉町 渡       | ~<br>~<br>€                           | 152 (161) | 720                   | 150 (162) | 744  | 148 (161) | 720              | 149 (193) | 744                                   | 151 (159) | 744         | 150 (161) | 714         | 151 (170) | 744         | 151 (168)  | 720         | 151<br>744<br>(180) |                                                                    |                  |   |      |   |             |

|         | 油電           |                |              |              |                                       |                               |                       |                                           |              |              |                  |                |                   |                   |              |                                        |              |
|---------|--------------|----------------|--------------|--------------|---------------------------------------|-------------------------------|-----------------------|-------------------------------------------|--------------|--------------|------------------|----------------|-------------------|-------------------|--------------|----------------------------------------|--------------|
| က       | 測定時間         |                |              |              |                                       |                               |                       |                                           |              |              |                  |                |                   |                   |              |                                        |              |
|         | 線            |                |              |              |                                       |                               |                       |                                           |              |              |                  |                |                   |                   |              |                                        |              |
| 2       | 測定時間         |                |              |              |                                       |                               |                       |                                           |              |              |                  |                |                   |                   |              |                                        |              |
|         | 線奉           |                |              |              |                                       |                               |                       |                                           |              |              |                  |                |                   |                   |              |                                        |              |
| 1       | 測定時間         |                |              |              |                                       |                               |                       |                                           |              |              |                  |                |                   |                   |              |                                        |              |
| R6. 1   | 線奉           |                |              |              |                                       |                               |                       |                                           |              |              |                  |                |                   |                   |              |                                        |              |
|         | 測定時間         | 744            | 744          | 744          | 744                                   | 738                           | 0                     | 744                                       | 744          | 743          | 744              | 744            | 744               | 738               | 737          | 744                                    | 744          |
| 12      | 後春           | 195 (221)      | (152)        | 112 (162)    | 94 (127)                              | 166 (201)                     | ı <u>î</u>            | 111 (147)                                 | 505 (536)    | 707 (759)    | 3,570 (3690)     | 215 (241)      | 1,980 (2050)      | 2,810 (2920)      | 253 (279)    | 331 (386)                              | 264 (289)    |
|         | 測定時間         | 714            | 720          | 720          | 720                                   | 720                           | 929                   | 85                                        | 720          | 720          | 720              | 720            | 713               | 720               | 720          | 720                                    | 720          |
| 11      | ※ 参          | 197 (211)      | 120 (141)    | 113 (138)    | 95 (111)                              | 169 (188)                     | 106 (123)             | 112 (121)                                 | 507 (524)    | 737 (781)    | 3, 630           | 218 (230)      | 1,960             | 2,800 (2910)      | 254 (271)    | 374 (386)                              | 264 (281)    |
|         | 測定時間         | 744            | 744          | 744          | 744                                   | 744                           | 738                   |                                           | 744          | 744          | 744              | 744            | 744               | 744               | 744          | 744                                    | 744          |
| 10      | 線車           | 195 (216)      | 121 (147)    | 114 (134)    | 95 (113)                              | 170 (187)                     | 108 (125)             |                                           | 507          | 764 (815)    | 3, 620 (3730)    | 219 (234)      | 1, 910 (1980)     | 2, 790 (2940)     | 256 (279)    | 378 (392)                              | 262 (283)    |
|         | 測定時間         | 720            | 720          | 720          | 714                                   | 720                           | 720                   |                                           | 713          | 719          | 714              | 715            | 720               | 720               | 720          | 713                                    | 714          |
| 6       | 線量           | 194 (220)      | 121 (136)    | 116 (131)    | 96 (110)                              | 167 (186)                     | 108 (122)             |                                           | 517 (578)    | 792 (888)    | 3, 700           | 219 (233)      | 1,930 (2050)      | 2, 710 (3130)     | 257 (271)    | 369                                    | 263 (285)    |
|         | 測定時間         | 744            | 739          | 744          | 744                                   | 744                           | 744                   |                                           | 744          | 744          | 740              | 744            | 744 (             | 744               | 744          | 744                                    | 744          |
| ∞       | 線量           | 199 (207)      | 123 (133)    | 118 (129)    | 97 (105)                              | 188 (205)                     | 108 (118)             |                                           | 553 (576)    | 836 (888)    | 3,770            | 226 (234)      | 1,970 (2040)      | 2,960 (3110)      | 263 (269)    | 405 (423)                              | 277 (286)    |
|         | 測定時間         | 744            | 744 (        | 744          | 744 (                                 | 744                           | 744                   |                                           | 744          | 744          | 3 744 (;         | 744            | 744 (3            | 744 (;            | 744          | 744                                    | 744 (        |
| 7       | 線量線率         | 195 (224)      | 122 (173)    | 116 (165)    | 97 (132)                              | 195 (225)                     | 109 (135)             |                                           | 544 (573)    | 812 (879)    | 3, 640 (3840)    | 224 (250)      | 1,930 (2010)      | 2,800 (3040)      | 261 (289)    | 397 (417)                              | 269 (290)    |
|         | 測定時間         | 022            | 720          | 720          | 720                                   | 720                           | 720                   |                                           | 120 ((       | 120          | 3, 720 (3        | 720            | 11,               | 720 (3            | 720          | 720                                    | 720 (        |
| 9       | 線量率          | 192 7          | 121 7        | 114 7        | 96                                    | 194 7                         | 107                   |                                           | 531 7        | 774 7        | 3,570            | 220            | 1,890             | 2, 620            | 259 7        | 381 7                                  | 262 7        |
|         | 測定 網         | 744 (2         | 744 (1       | 744 (1       | 744 (1                                | 744 (2                        | 744 (1                |                                           | 744 (5       | 744 (8       | 3, 742 (3:       | 744 (2         | 742 1,            | 742 2,            | 744 (2       | 744 (4                                 | 744 (2       |
| 5       | 線量率率         | 197 7          | 122 7        | 116 7. (134) | 7 (011)                               | 7. (210)                      | 77 (121)              |                                           | 538 7. (566) | 745 7. (825) | 3,670 7.         | 223 7. (233)   | 1,940 7. (2030)   | 2, 790 7.         | 263 7. (273) | 389 7. (410)                           | 269 7        |
|         |              |                |              |              |                                       |                               |                       |                                           |              |              |                  |                |                   |                   |              |                                        |              |
| R5. 4   | 量 測定 時間      | 720            | 3 720        | 7 720        | 720                                   | 5 720                         | 3 720                 |                                           | 7 720        | 720          | 30 720           | 5 720<br>4)    | 30 720            | 30<br>720<br>:0)  | 5 720<br>4)  | 3 720                                  | 1 720<br>1)  |
|         | 機棒           | 200<br>L (211) | 123<br>(136) | *1 117 (132) | 。<br>商<br>(106)                       | <sup>5.7</sup> 196<br>茶 (207) | 。<br>为 108<br>为 (121) | 23 **                                     | 痛 (567)      | *1 740 (783) | 3, 730<br>(3830) | 225<br>F (234) | 1,980<br>決 (2040) | 2,890<br>H (3040) | 266 ± (274)  | 393<br>加<br>(411)                      | 274<br>(284) |
| 測定年月    | 測定項目<br>b点名  | はおりゃま          | "<br>能       | *<br>*\<br>* | · · · · · · · · · · · · · · · · · · · | - PT                          | £ = =                 | *<br>==================================== | #<br>#<br>#  | *=           | 5.1⊷             | e <b>m</b>     | 40<br>40          | **<br>**          | *            | ************************************** | 4<br>4<br>5  |
| 聚/      | 測定型<br>測定地点名 | т<br>*Ч        | ₽<br>J⊬      | *迷           | ·<br>·<br>·<br>·<br>·                 | 上夜                            | <del>15</del><br>□ ←  | ےٌٰد                                      | ₽ <u>च</u>   | 上<br>**      | т<br>Т           | ±<br>**⊀       | # <del>1</del> K  | *∃<br>d           | ''           | ¬<br>☆<br>₩                            | <u>\$1</u>   |
| //      | _            | 国国国            | 画画           | 画画           | 富岡町                                   | 富岡町                           | 川内村                   | 川内村                                       | 大熊町          | 大熊町          | 大熊町              | 大熊町            | 大熊町               | 双葉町               | 双葉町          | 双葉町                                    | 双葉町          |
| <u></u> | - ġ          | 13             | 14           | 15           | 16                                    | 17                            | ç                     | 0                                         | 19           | 20           | 21               | 22             | 23                | 24                | 25           | 26                                     | 27           |

|          | 扣買          |          |            |           |                |               |             |                |             |          |            |                             |                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-------------|----------|------------|-----------|----------------|---------------|-------------|----------------|-------------|----------|------------|-----------------------------|-----------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| က        | 測定時間        |          |            |           |                |               |             |                |             |          |            |                             |                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 線           |          |            |           |                |               |             |                |             |          |            |                             |                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 測定時間        |          |            |           |                |               |             |                |             |          |            |                             |                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2        | 線量率         |          |            |           |                |               |             |                |             |          |            |                             |                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1        | 測定時間        |          |            |           |                |               |             |                |             |          |            |                             |                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| R6. 1    | 線量率         |          |            |           |                |               |             |                |             |          |            |                             |                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2        | 測定時間        | 744      | 744        | 744       | 738            | 0             | 744         | 744            | 744         | 744      |            | 744                         | 744                                     | 744       | 744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12       | 線量率         | 88 (118) | 62 (97)    | 112 (144) | 76 (101)       | ı <u>ĵ</u>    | 550 (568)   | 358            | 111 (134)   | 85 (113) |            | 158 (178)                   | 42 (68)                                 | 115 (137) | 102 (125)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 測定時間        | 720      | 720        | 720       | 720            | 633           | 206         | 720            | 720         | 432      | 296        | 720                         | 720                                     | 720       | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11       | 線量率         | 89 (113) | 62 (94)    | 112 (139) | 92 (86)        | 508 (523)     | 564 (579)   | 362 (376)      | 113 (140)   | 85 (116) | 101 (140)  | 159 (186)                   | 42 (78)                                 | 116 (138) | 105 (129)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 測定時間        | 744      | 744        | 744       | 744            | 744           |             | 744            | 739         | 32       | 744        | 739                         | 744                                     | 744       | 744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10       | 線量率         | 91 (115) | 62 (83)    | 112 (134) | 76 (91)        | 512 (523)     |             | 363 (372)      | 112 (123)   | (86)     | 100 (1119) | 164 (174)                   | 42 (56)                                 | 116 (137) | 105 (117)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 測定時間        | 720      | 720        | 713       | 720            | 718           |             | 717            | 720         | 714      | 32         | 720                         | 720                                     | 720       | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6        | 線量率         | 90 (107) | 62 (78)    | 114 (126) | 76 (88)        | 514 (540)     |             | 369            | 114 (135)   | 85 (116) | 100 (104)  | 165 (194)                   | 42 (68)                                 | 118 (140) | 105 (129)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 測定時間        | 743      | 742        | 744       | 744            | 744           |             | 744            | 744         | 744      |            | 744                         | 740                                     | 739       | 739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ∞        | 線量率         | 93 (101) | 62 (73)    | 117 (126) | 77 (84)        | 526<br>(543)  |             | 381            | 115 (121)   | 88 (97)  |            | 170 (178)                   | 42 (54)                                 | 117 (127) | 107 (137)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 測定時間        | 744      | 744        | 744       | 744            | 744           |             | 744            | 744         | 744      |            | 744                         | 744                                     | 744       | 744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7        | 線量率率        | 91 (133) | 62 (111)   | 116 (147) | 76 (112)       | 525<br>(553)  |             | 372<br>(395)   | 115 (150)   | 86 (164) |            | 167 (188)                   | 42 (80)                                 | 115 (131) | 106 (134)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 測定時間        | 720      | 720        | 720       | 720            | 720           |             | 720            | 720         | 720      |            | 720                         | 720                                     | 720       | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9        | 線量 零        | 89 (110) | 61 (83)    | 113 (132) | 75 (89)        | 517 (531)     |             | 369            | 113 (132)   | 85 (102) |            | 163 (175)                   | 42 (60)                                 | 113 (126) | 104 (117)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 測定時間        | 744 (    | 744        | 744 (     | 744            | 744           |             | 744            | 744 (       | 744 (    |            | 744 (                       | 744                                     | 744       | 744 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5        | 線量率         | 90 5     | 62 (80)    | 114       | . 97<br>. (89) | 515           |             | 375            | 114         | 87 7     |            | 166                         | 42 (60)                                 | 114       | 105 (124)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 測定 籍        | 720 (1   | 720        | 720 (1    | 720            | 720 (5        |             | 720 (3         | 720 (1      | 720 (1   |            | 720 (1                      | , , , , , , , , , , , , , , , , , , , , | 720 (1    | 720 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| R5.4     | 線量 瀬率 時     | 90 7     | 62<br>(76) | 116 7     | 76 (86)        | 516 7 7 (526) |             | 379 7.         | 115 7 (125) | 7 (86)   |            | 167 7                       | 42<br>(54)                              | 116 7     | 107 7 (116)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | □ □         | 11)      | *1         | * H       | 7              | 5 5           | *2          | (38 33         | 35 (1: 1)   | *於       | .22        | 4                           | *常                                      | 1 2 (1)   | 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 測定年月     | 測定項目<br>3点名 | 2 IL     | "相         | *         | #              | Ĭ             | A<br>X      | *<br>#         |             | **       | でまる        | Ĭ                           | #<br>5                                  | **        | $^{3}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ |
| 榖/       | 測定地点名       | が出土      | T<br>棚     | T<br>浪    | ****           | T 大           | T<br>大<br>* | * <del>E</del> | t-<br>ÇIEX  | い自水      |            | <del>□</del><br>** <b>★</b> | 和                                       | · 色       | *∃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $/\!\!/$ |             | 3 浪江町    | 9 浪江町      | ) 浪江町     | 1 浪江町          | 浪江町           | 浪江町         | 3 浪江町          | 1 葛尾村       | 南相馬市     | 南相馬市       | 5 南相馬市                      | 7 南相馬市                                  | 3 飯舘村     | ) 川俣町                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u> </u> | Ŋ.          | 28       | 29         | 30        | 31             | ć             | o o         | 33             | 34          | Ĺ        | 35         | 36                          | 37                                      | 38        | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

1 No.の網掛け部分は東京電力ホールディングス株式会社福島第一原子力発電所から半径5km未満の地域 「一」: 欠測

<sup>3 \*1</sup> 可搬型モニタリングポストによる測定4 \*2 局舎近傍で可搬型モニタリングにより代替測定

5-1-1(2) 空間線量率 (比較対照地点)

単位 線量率:n6y/h 測定時間:h 上段:平均值 (下段):最大值

| 60   | 事                                       |                                       |       |       |       |       |                                                                            |                                |
|------|-----------------------------------------|---------------------------------------|-------|-------|-------|-------|----------------------------------------------------------------------------|--------------------------------|
|      | 事<br>計<br>言                             |                                       |       |       |       |       |                                                                            |                                |
| 2    | <b>藤</b>                                |                                       |       |       |       |       |                                                                            |                                |
| -1   | 事 温 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 |                                       |       |       |       |       |                                                                            |                                |
| R6.  | 秦<br>一                                  |                                       |       |       |       |       |                                                                            | 変更した。                          |
| 63   | 時間                                      | 733                                   |       | Ţ     | ŧ     | 7.44  | ŧ                                                                          | 近) に3                          |
| 12   | 禁<br>一                                  | 47                                    | (108) | 103   | (125) | 09    | (81)                                                                       | 島県庁前駐輪場付近)に変更し                 |
|      | 時間                                      | 720                                   |       | 000   | 077   | 710   | 017                                                                        | 島県庁前                           |
| .11  | <b>藤</b>                                | 47                                    | (66)  | 105   | (144) | 09    | (62)                                                                       | 松妻 (福                          |
| 10   | 幸 温 温 温 温 温 温 温 温 温 温 温 温 温 温 温 温 温 温 温 | 744                                   |       | 141   | 14.1  | 744   | 14,                                                                        | 福島市                            |
| 1    | <b>秦</b>                                | 46                                    | (69)  | 106   | (121) | 09    | (80)                                                                       | 定地点                            |
| 6    | 海岸時間                                    | 720                                   |       | 100   | 071   | 700   | 071                                                                        | 度から測                           |
| 05   | <b>秦</b>                                | 47                                    | (85)  | 106   | (129) | 69    | (16)                                                                       | 令和5年                           |
|      | 時間                                      | 744                                   |       | 144   | +     | 744   | #                                                                          | たため、                           |
| ∞    | <b>黎</b>                                | 46                                    | (69)  | 106   | (116) | 69    | (89)                                                                       | が浸水し                           |
|      | 時<br>問                                  | 725                                   |       | 101   | 101   | 740   | 140                                                                        | ゲポスト                           |
|      | 禁<br>一                                  | 47                                    | (60)  | 104   | (127) | 69    | (83)                                                                       | ニタリングポストが浸水したため、令和5年度から測定地点を   |
| 9    | 事<br>三<br>三                             | 969                                   |       | 100   | 071   | 700   | 071                                                                        | 気点のモニ                          |
|      | 禁<br>一                                  | 46                                    | (11)  | 102   | (117) | 69    | (74)                                                                       | 紅葉山地                           |
| 2    | 事<br>三<br>三                             | 744                                   |       | 1     | +     | 7.4.4 | ++-                                                                        | り福島市                           |
|      | <b>黎</b>                                | 46                                    | (09)  | 103   | (125) | 69    | (75)                                                                       | 曽水によ                           |
| R5.4 | 事<br>三<br>三                             | 720                                   |       | 190   | 071   | 700   | 071                                                                        | 4う河川                           |
| RE   | <b>黎</b>                                | 45                                    | (ac)  | 103   | (113) | 69    | (20)                                                                       | 19号に作                          |
| 測定年月 | 測定項目                                    | か<br>第<br>第                           |       |       | 星     | たいら   | <del>1</del>                                                               | 今和元年台風第19号に伴う河川増水により福島市紅葉山地点のモ |
|      | 測定地点名                                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | :     | 1 1 1 | E E   |       | 10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | 、 1* (                         |
|      | No.                                     | 1 福                                   |       | -     |       |       | 2                                                                          | .,,,,                          |
|      | Z                                       |                                       |       |       |       |       |                                                                            | l                              |

41

|                               | ಣ    | 三世一               |
|-------------------------------|------|-------------------|
| 測定時間:day<br>):最大値             |      | <b>黎</b>          |
| s:nSv/h 測:<br>I (下段):場        | 23   | 測定日数              |
| 単位 線量率:nSv/h ;<br>上段:平均值 (下段) |      | 禁<br>叫 科          |
|                               | . 1  | 選<br>田<br>数       |
|                               | R6.  | 禁<br>料            |
|                               | 71   | 通田教               |
|                               | 1    | 線率                |
|                               | 11   | 通定日数              |
|                               | 1    | 線率                |
|                               | 10   | 通田教               |
|                               | 1    | 線棒                |
|                               | 6    | 通定日数              |
|                               |      | 線率                |
|                               | ∞    | 三 三 英             |
|                               |      | <b>禁</b>          |
|                               | 2    | 三 三 英             |
|                               |      | <b>紫</b>          |
|                               | 9    | <b>巡</b> 日<br>教   |
|                               |      | 鎌<br>軸            |
|                               | 2    | <b>巡</b> 日<br>茶   |
|                               |      | 鎌<br>軸            |
|                               | 4.   | 通加工数              |
|                               | R5.  | <b>紫</b>          |
| 5-1-1(3) 中性子線量率               | 測定年月 | 测定項目<br>No. 测定地点名 |

31

ь 4

30

3

31

4 (4)

30

4 (4)

31

4 (4)

31

4 (4)

30

4 (4)

31

4 (4)

30

4 (4)

 $e_{\overline{\overline{\overline{\overline{\overline{\overline{\overline}}}}}}}$ 

<del>1</del>6

大熊町

31

4 (5)

30

4 (5)

31

4 (5)

30

4 (5)

31

4 (5)

31

4 (5)

30

4 (5)

31

4 (5)

30

4 (5)

が沢

終夫

大熊町

31

4 (4)

30

4 3

31

4 (4)

30

4 4

31

(4)

31

4

30

4

31

4 (4)

30

4

#浜

5

を育

南相馬市

33

No.の網掛け部分は東京電力ホールディングス株式会社福島第一原子力発電所から半径5m未満の地域 環境中の中性子線強度が低いために1時間値では測定値のばらつきが大きいことから、1日間値を掲載している 紐

5-1-2 空間積算線量

(単位 mGy)

| 1   |       |                                             |        |               |      |        |                 |                  |       |                     |                       |      | Ī    |
|-----|-------|---------------------------------------------|--------|---------------|------|--------|-----------------|------------------|-------|---------------------|-----------------------|------|------|
| //  |       | 測定期間                                        | R5. 4. | 6<br>~R5. 7.  | 9 .  | R5. 7. | . 6<br>~R5. 10. |                  | R5. 1 | 10. $5 \sim R6. 1.$ | 11                    |      |      |
| No. | 測定地点名 | 測定項目名                                       | 積算     | 算線量           | 三三世教 | 積      | 積算線量            | )<br>三<br>三<br>数 | 養     | 積算線量                | )<br>原<br>足<br>数<br>形 | 積算線量 | 三三一次 |
| 1   | いわき市  | ン<br>□<br>□<br>□<br>□                       | 0.17   | (0.17)        | 91   | 0.18   | (0.17)          | 91               | 0.18  | (0.17)              | 86                    |      |      |
| 2   | いわき市  | よっくを                                        | 0.22   | (0.22)        | 91   | 0.22   | (0.22)          | 91               | 0.24  | (0.22)              | 86                    |      |      |
| 3   | いわき市  | まま 野                                        | 0.19   | (0.19)        | 91   | 0.20   | (0.19)          | 91               | 0.21  | (0.19)              | 86                    |      |      |
| 4   | いわき市  | ふくぉか<br>福 一 岡                               | 0.22   | (0.22)        | 91   | 0.23   | (0.22)          | 91               | 0.24  | (0.22)              | 86                    |      |      |
| 2   | いわき市  | おおひみ大                                       | 0.20   | (0.20)        | 16   | 0.20   | (0.20)          | 91               | 0.22  | (0.20)              | 86                    |      |      |
| 9   | いわき市  | *米って ** ** ** ** ** ** ** ** ** ** ** ** ** | 0.23   | (0.23)        | 91   | 0.23   | (0.23)          | 91               | 0.25  | (0.23)              | 86                    |      |      |
| 2   | いわき市  | かみおがわ<br>上 小 川                              | 0.29   | (0.29)        | 91   | 0.29   | (0.29)          | 91               | 0.31  | (0.29)              | 86                    |      |      |
| ∞   | いわき市  | しだんみょう 声田名                                  | 0.31   | (0.31)        | 16   | 0.31   | (0.31)          | 91               | 0.33  | (0.30)              | 86                    |      |      |
| 6   | いわき市  |                                             | 0.19   | (0.19)        | 91   | 0.19   | (0.19)          | 91               | 0.20  | (0.19)              | 86                    |      |      |
| 10  | 田村市   | 場 は                                         | 0.29   | (0.28)        | 16   | 0.29   | (0.28)          | 91               | 0.30  | (0.28)              | 86                    |      |      |
| 11  | 田村市   | よるみ造                                        | 0.24   | (0.24)        | 91   | 0.24   | (0.24)          | 91               | 0.25  | (0.23)              | 86                    |      |      |
| 12  | 田村市   | いおいさわ岩井沢                                    | 0.19   | (0.19)        | 91   | 0.19   | (0.19)          | 91               | 0.20  | (0.19)              | 86                    |      |      |
| 13  | 広野町   | しもあさみがわ<br>下浅見川                             | 0.18   | (0.18)        | 16   | 0.18   | (0.18)          | 91               | 0.20  | (0.18)              | 86                    |      |      |
| 14  | 広野町   | ほうきだいら<br><b>帯</b>                          | 0.23   | (0.22)        | 16   | 0.23   | (0.22)          | 91               | 0.24  | (0.22)              | 86                    |      |      |
| 15  | 楢葉町   | やまだおか山田田岡                                   | 0.17   | (0.17)        | 91   | 0.17   | (0.17)          | 91               | 0.18  | (0.16)              | 86                    |      |      |
| 16  | 楢葉町   | おっとじろう<br>乙 次 郎                             | 0.23   | (0.23)        | 91   | 0.23   | (0.23)          | 91               | 0.24  | (0.22)              | 86                    |      |      |
| 17  | 楢葉町   | 井, 世出                                       | 0.20*1 | $(0.20^{*1})$ | 91   | 0.20   | (0.20)          | 91               | 0.21  | (0.19)              | 86                    |      |      |
| 18  | 楢葉町   | かみしげおか<br>上 繁 岡                             | 0.30   | (0.30)        | 91   | 0.31   | (0.31)          | 91               | 0.32  | (0.30)              | 86                    |      |      |
| 19  | 富岡町   | #<br>#<br>#<br>#                            | 0.35   | (0.34)        | 91   | 0.35   | (0.35)          | 91               | 0.37  | (0.34)              | 86                    |      |      |
| 20  | 富岡町   | 赤水木                                         | 0.35   | (0.35)        | 91   | 0.35   | (0.34)          | 91               | 0.37  | (0.34)              | 86                    |      |      |
| 21  | 富岡町   | おらがはま<br>小良ケ浜                               | 2.4    | (2.4)         | 91   | 2.4    | (2.4)           | 91               | 2.4   | (2.2)               | 86                    |      |      |
| 22  | 富岡町   | ょのもりきた<br>夜の森北                              | 0.41   | (0.40)        | 91   | 0.41   | (0.41)          | 91               | 0.43  | (0.39)              | 86                    |      |      |
| l   |       |                                             |        |               |      |        |                 |                  |       |                     |                       |      |      |

(単位 mGy)

| /   |       | 測定期間                                            | R5. 4.     | 6 ~R5. 7.    | 9 . | R5. 7. | $^6$ $\sim$ R5. 10. | . 22 | R5. 1 | 10. $5 \sim R6. 1.$ | 11          |      |  |
|-----|-------|-------------------------------------------------|------------|--------------|-----|--------|---------------------|------|-------|---------------------|-------------|------|--|
| No. | 测定地点名 | 測定項目                                            | 積          | 積算線量         |     | 積      | 積算線量                |      | 積     | 積算線量                | )<br>河<br>教 | 積算線量 |  |
| 23  | 富岡町   | かみておか上手手                                        | 0.49       | (0, 48)      | 91  | 0.49   | (0, 49)             | 91   | 0.51  | (0.47)              | 86          |      |  |
| 24  | 川内村   | きったし                                            | 0.46       | (0.46)       | 91  | 0.46   | (0.46)              | 91   | 0.49  | (0.45)              | 86          |      |  |
| 25  | 川内村   | かいのきか                                           | 0.65       | (0.64)       | 91  | 0.65   | (0.64)              | 91   | 0.69  | (0.63)              | 86          |      |  |
| 26  | 川内村   | ごまいぎわ五枚税                                        | 0.24       | (0.24)       | 91  | 0.24   | (0.24)              | 91   | 0.25  | (0.23)              | 86          |      |  |
| 27  | 川内村   | かみかわうち<br>上 川 内                                 | 0.21       | (0.20)       | 91  | 0.21   | (0.21)              | 91   | 0.22  | (0.20)              | 86          |      |  |
| 28  | 大熊町   | おおがわら大川原                                        | 0.30       | (0.30)       | 91  | 0.31   | (0.30)              | 91   | 0.31  | (0.29)              | 86          |      |  |
| 29  | 大熊町   | あきひがおか<br>旭ケ丘                                   | 0.35       | (0.35)       | 91  | 0.36   | (0.35)              | 91   | 0.37  | (0.34)              | 86          |      |  |
| 30  | 大熊町   | 野 ※ 発                                           | 1.2        | (1.2)        | 91  | 1.2    | (1.1)               | 91   | 1.2   | (1.1)               | 86          |      |  |
| 31  | 大熊町   | なまがお                                            | 2.4        | (2.4)        | 91  | 2.4    | (2.3)               | 91   | 2.5   | (2.3)               | 86          |      |  |
| 32  | 大熊町   | * * 野                                           | 0.50       | (0.49)       | 91  | 0.50   | (0.49)              | 91   | 0.53  | (0.49)              | 86          |      |  |
| 33  | 大熊町   | おっとざわ<br>夫が祝                                    | 5.8        | (5.7)        | 91  | 5.8    | (5.8)               | 91   | 6.1   | (5.6)               | 86          |      |  |
| 34  | 大熊町   | ゅっか み<br>湯 の 神                                  | $1.1^{*2}$ | $(1.1^{*2})$ | 91  | 1.1    | (1.1)               | 91   | 1.2   | (1.1)               | 86          |      |  |
| 35  | 大熊町   | 5, 1, 2, c, | 4.0        | (3.9)        | 91  | 4.2    | (4.2)               | 91   | 4.4   | (4.1)               | 86          |      |  |
| 36  | 双葉町   | **                                              | 0.68       | (0.67)       | 91  | 0.71   | (0.70)              | 91   | 0.73  | (0.67)              | 86          |      |  |
| 37  | 双葉町   | こおりやま                                           | 0.57       | (0.56)       | 91  | 0.57   | (0.56)              | 91   | 0.59  | (0.54)              | 86          |      |  |
| 38  | 双葉町   | ながった長がった                                        | 0.75       | (0.74)       | 91  | 0.76   | (0.75)              | 91   | 0.78  | (0.72)              | 86          |      |  |
| 39  | 浪江町   | 2<br>#<br>#                                     | 10         | (9.9)        | 91  | 10     | (10)                | 91   | 10    | (9.6)               | 86          |      |  |
| 40  | 浪江町   | 請け戸                                             | 0.24       | (0.23)       | 91  | 0.24   | (0.24)              | 91   | 0.25  | (0.23)              | 86          |      |  |
| 41  | 浪江町   | おりだか                                            | 0.67       | (0.66)       | 91  | 0.67   | (0.67)              | 91   | 0.68  | (0.63)              | 86          |      |  |
| 42  | 浪江町   | きょばん<br>幾世 橋                                    | 0.23       | (0.23)       | 91  | 0.24   | (0.23)              | 91   | 0.25  | (0.23)              | 86          |      |  |
| 43  | 浪江町   | 対するを配                                           | 0.62       | (0.61)       | 91  | 0.62   | (0.61)              | 91   | 0.65  | (0.60)              | 86          |      |  |
| 44  | 浪江町   | でるそね 昼 曽 根                                      | 3.4        | (3.4)        | 91  | 3.5    | (3.4)               | 91   | 3.6   | (3.3)               | 86          |      |  |

(単位 mGy)

| /   |       | 測定期間                                  | R5. 4.   | . 6<br>~R5. 7. | 9 .     | R5. 7. | $^6$ $\sim$ R5. 10. | . 5  | R5. 1 | 10. $\frac{5}{\sim}$ R6. 1. | 11      |      |         |
|-----|-------|---------------------------------------|----------|----------------|---------|--------|---------------------|------|-------|-----------------------------|---------|------|---------|
| No. | 測定地点名 | 測定項目                                  | 積        | 積算線量           | 測<br>日数 | 積      | 積算線量                | 通定日数 | 積.    | 積算線量                        | 測<br>日数 | 積算線量 | 測<br>日数 |
| 45  | 浪江町   | 智 東                                   | 0.97     | (0.96)         | 91      | 0.98   | (0, 97)             | 91   | 1.0   | (0.92)                      | 86      |      |         |
| 46  | 葛尾村   | ************************************* | 0.29     | (0.29)         | 91      | 0.29   | (0.29)              | 91   | 08.0  | (0.28)                      | 86      |      |         |
| 47  | 葛尾村   | おちあい格                                 | 0.40     | (0.39)         | 91      | 0.40   | (0.40)              | 91   | 0.42  | (0.39)                      | 86      |      |         |
| 48  | 葛尾村   | 野中青野                                  | 1.3      | (1.3)          | 91      | 1.3    | (1.2)               | 91   | 1.3   | (1.2)                       | 86      |      |         |
| 49  | 南相馬市  | 清らじ別                                  | 0.21     | (0.21)         | 91      | 0.21   | (0.21)              | 91   | 0.22  | (0.20)                      | 86      |      |         |
| 20  | 南相馬市  | みみがい耳                                 | 0.23     | (0.23)         | 91      | 0.24   | (0.23)              | 91   | 0.25  | (0.23)                      | 86      |      |         |
| 51  | 南相馬市  | かるき                                   | 0.69     | (0.68)         | 91      | 0.70   | (0.69)              | 91   | 0.72  | (0.66)                      | 86      |      |         |
| 52  | 南相馬市  | t * ば<br>関 場場                         | 0.39     | (0.38)         | 91      | 0.40   | (0.39)              | 91   | 0.42  | (0.38)                      | 86      |      |         |
| 53  | 南相馬市  | たか                                    | 0.17     | (0.16)         | 91      | 0.17   | (0.17)              | 91   | 0.18  | (0.16)                      | 86      |      |         |
| 54  | 南相馬市  | ** * * * <u>*</u><br>大木 戸             | 0.17     | (0.17)         | 91      | 0.17   | (0.17)              | 91   | 0.18  | (0.16)                      | 86      |      |         |
| 22  | 南相馬市  | かいばま                                  | 0.15     | (0.15)         | 91      | 0.15   | (0.15)              | 91   | 0.16  | (0.15)                      | 86      |      |         |
| 99  | 南相馬市  | ** * * * 序<br>大 原                     | 0.30     | (0.30)         | 91      | 0.30   | (0.30)              | 91   | 0.32  | (0.29)                      | 86      |      |         |
| 22  | 南相馬市  | ₩ ₽ Ĕ                                 | 0.21     | (0.21)         | 91      | 0.22   | (0.21)              | 91   | 0.22  | (0.21)                      | 86      |      |         |
| 28  | 飯舘村   | わらびだいら<br>蕨                           | 0.60     | (0.59)         | 91      | 0.59   | (0.59)              | 91   | 0.61  | (0.56)                      | 86      |      |         |
| 59  | 飯舘村   | ながどる<br><b>長</b> が泥泥                  | 0.36*1   | $(0.36^{*1})$  | 91      | 0.37   | (0.36)              | 91   | 0.38  | (0.35)                      | 86      |      |         |
| 09  | 飯舘村   | がさが                                   | 0.45     | (0, 45)        | 91      | 0.45   | (0.45)              | 91   | 0.46  | (0.43)                      | 86      |      |         |
| 61  | 飯舘村   | うすいし                                  | 0.80     | (0.79)         | 91      | 0.79   | (0.79)              | 91   | 0.82  | (0.76)                      | 86      |      |         |
| 62  | 飯舘村   | ゟ゙゙゙゙゙゙゙゙゙゚ <i>ッ</i>                  | 0.69     | (0.68)         | 91      | 0.69   | (0.68)              | 91   | 0.71  | (0.65)                      | 86      |      |         |
| 63  | 川俣町   | やまきやさかした山木屋坂下                         | 0.66     | (0.65)         | 91      | 0.67   | (0.67)              | 91   | 0.69  | (0.63)                      | 86      |      |         |
| 64  | 川俣町   | や山<br>**<br>大                         | 0.27     | (0.27)         | 91      | 0.28   | (0.28)              | 91   | 0.29  | (0.26)                      | 86      |      |         |
| 1   | ,     | T 0017 4                              | 11 44 41 |                |         |        |                     |      |       |                             |         |      |         |

( ) 内は90日換算値 注) 1

No.の網掛け部分は東京電力ホールディングス株式会社福島第一原子力発電所から半径5km未満の地域\*1 令和5年4月6日に設置場所を移設した影響による低下\*2 周辺の除染作業の影響による低下

| 単位 放射能濃度:Bq/m。測定時間:h<br>上段:平均值 (下段):最大值    | т     | 測定 測定 測定<br>時間 値 時間 |               |              |                          |                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |              |                 |                                   |              |                                            |              |               |
|--------------------------------------------|-------|---------------------|---------------|--------------|--------------------------|-----------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|--------------|-----------------|-----------------------------------|--------------|--------------------------------------------|--------------|---------------|
| 单位 放射能達<br>上段:平均値                          | 2     | 調定値                 |               |              |                          |                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |              |                 |                                   |              |                                            |              |               |
|                                            |       | 測定時間                |               |              |                          |                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |              |                 |                                   |              |                                            |              |               |
|                                            | R6. 1 | 測定値                 |               |              |                          |                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |               |              |                 |                                   |              |                                            |              |               |
|                                            |       | 測定時間                | 732           | 732          | 732                      | 732                               | 0                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 732           | 732           | 744           | 744          | 732             | 732                               | 0            | 0                                          | 744          | 744           |
|                                            | 12    | 測定値                 | 0.033         | 0.053 (0.25) | 0.010 (0.052)            | 0.030 (0.092)                     | - (-)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.019         | 0.039         | 0.018         | 0.073 (0.28) | 0.019           | 0.070 (0.24)                      | - (-)        | (-)                                        | 0.026 (0.11) | 0.096 (0.34)  |
|                                            |       | 測定時間                | 354           | 354          | 198                      | 198                               | 654               | 654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 720           | 720           | 720           | 720          | 720             | 720                               | 989          | 989                                        | 624          | 624           |
|                                            | 11    | 測値                  | 0.028 (0.093) | 0.047        | 0.011                    | 0.030                             | 0.017             | 0.041 (0.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.024 (0.12)  | 0.046 (0.17)  | 0.027         | 0.10 (0.64)  | 0.026 (0.13)    | 0.092 (0.39)                      | 0.045 (0.25) | 0.071 (0.32)                               | 0.040 (0.24) | 0.14 (0.69)   |
|                                            |       | 測定時間                | 42            | 42           | 99                       | 99                                | 744               | 744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 744           | 744           | 744           | 744          | 744             | 744                               | 744          | 744                                        | 744          | 744           |
|                                            | 10    | 測定値                 | 0.028 (0.081) | 0.049 (0.12) | 0.008                    | 0.027 (0.045)                     | 0.017             | 0.041 (0.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.025 (0.085) | 0.048 (0.13)  | 0.016 (0.13)  | 0.067 (0.42) | 0.022 (0.087)   | 0.080 (0.28)                      | 0.044 (0.21) | 0.071 (0.29)                               | 0.029 (0.16) | 0.11 (0.48)   |
|                                            |       | 測定時間                | 720           | 720          | 708                      | 708                               | 802               | 708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 708           | 708           | 672           | 672          | 720             | 720                               | 720          | 720                                        | 099          | 099           |
|                                            | 6     | 測定値                 | 0.038 (0.14)  | 0.059 (0.18) | 0.018 (0.084)            | 0.040 (0.14)                      | 0.021 (0.075)     | 0.046 (0.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.031 (0.12)  | 0.054 (0.16)  | 0.014 (0.069) | 0.059        | 0.018 (0.079)   | 0.068 (0.26)                      | 0.037 (0.14) | 0.060 (0.19)                               | 0.029 (0.11) | 0.11          |
|                                            |       | 測定時間                | 744           | 744          | 738                      | 738                               | 744               | 744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 744           | 744           | 612           | 612          | 684             | 684                               | 744          | 744                                        | 744          | 744           |
|                                            | 8     | 測定値                 | 0.035         | 0.055 (0.28) | 0.017                    | 0.040                             | 0.019 (0.092)     | 0.043 (0.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.026         | 0.048 (0.14)  | 0.016         | 0.067        | 0.020 (0.11)    | 0.074 (0.38)                      | 0.035        | 0.058 (0.22)                               | 0.035        | 0. 12 (0. 68) |
|                                            |       | 測定時間                | 732           | 732          | 726                      | 726                               | 744               | 744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 732           | 732           | 744           | 744          | 744             | 744                               | 744          | 744                                        | 744          | 744           |
|                                            | 7     | 測定値                 | 0.045         | 0.067        | 0.018                    | 0.041 (0.12)                      | 0.026             | 0.054 (0.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.032 (0.13)  | 0.056         | 0.018         | 0.076        | 0.022 (0.10)    | 0.082 (0.34)                      | 0.042 (0.20) | 0.067                                      | 0.045        | 0.15 (0.75)   |
|                                            |       | 測時間                 | 672           | 672          | 720                      | 720                               | 648               | 648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 720           | 720           | 720           | 720          | 720             | 720                               | 654          | 654                                        | 720          | 720           |
|                                            | 9     | 測値                  | 0.029 (0.14)  | 0.049 (0.17) | 0.013                    | 0.033 (0.11)                      | 0.016             | 0.039 (0.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.022 (0.064) | 0.042 (0.095) | 0.011         | 0.052 (0.23) | 0.013           | 0.055                             | 0.028 (0.15) | 0.052 (0.20)                               | 0.028 (0.23) | 0.10 (0.68)   |
|                                            |       | 測定時間                | 684           | 684          | 684                      | 684                               | 744               | 744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 684           | 684           | 744           | 744          | 744             | 744                               | 726          | 726                                        | 744          | 744           |
|                                            | ιc    | 測定値                 | 0.030 (0.13)  | 0.052 (0.19) | 0.012 (0.048)            | 0.034                             | 0.014 (0.058)     | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.018 (0.084) | 0.040 (0.14)  | 0.014 (0.10)  | 0.062 (0.36) | 0. 017 (0. 092) | 0.067                             | 0.025 (0.10) | 0.049 (0.16)                               | 0.032 (0.19) | 0.11 (0.62)   |
|                                            |       | 測定時間                | 720           | 720          | 720                      | 720                               | 720               | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 720           | 720           | 720           | 720          | 720             | 720                               | 720          | 720                                        | 720          | 720           |
| gg                                         | R5. 4 | 通定                  | 0.035         | 0.059 (0.23) | 0.015 (0.073)            | 0.038 (0.12)                      | 0.014 (0.055)     | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.019 (0.067) | 0.041         | 0.016         | 0.068        | 0.019 (0.14)    | 0.074 (0.45)                      | 0.028 (0.15) | 0.051 (0.21)                               | 0.033 (0.29) | 0.12 (0.89)   |
| :一夕放射僧                                     |       | Ш)                  | アー・           | 7            | 7 7                      | 夕 ᇷ                               | 7 7 能 (           | 夕 郷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 第 (         | 夕 ᇷ           | アる            | 夕 鴉          | フィ              | 夕 ᇷ                               | 7 7 能        | 一 海                                        | フィ           | 7             |
| 竹能及び全ペ                                     |       | 測定項目                | 金インを発         | 金んが          | 金イル                      | <ul><li>会 数</li><li>人 整</li></ul> | 全アル放射             | 全 放 水 水 素                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 金アル           | 全故            | を対対を対する       | 金数           | 金イル             | <ul><li>会 数</li><li>人 整</li></ul> | 全アル放射        | 金が、水を水を、水を、水を、水を、水を、水を、水を、水を、水を、水を、水を、水を、水 | 金アル放射        | を放ける。         |
| アルファ散                                      | 測定年月  |                     | 4             |              | #<br>6<br>7.7.0<br>7.1.0 |                                   | ه<br>اخرا<br>اخرا | 御                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | ¥             | 4 24          | 匿            | 4 4             | E                                 | \$ 6 4       |                                            | @ \$         | 缸             |
| 遊じんの全                                      | 測定    |                     |               | ź            | *<br>リリッション<br>ロロ        | 超                                 | 42                | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2u<br>40      | <del>K</del>  | ب             | ¥            | at a            | įd                                | 6 4 18 4 3   | ۴                                          | 22           | K             |
| 5-2 環境政林<br>5-2-1 大気洋遊じんの全アルファ放射艦及び全ペータ放射艦 | $\ /$ | 選定基点名               | <del> </del>  | 10           | #<br>#<br>E              | =<br>₹<br>H                       | 10 M              | The line of the li | 144 484 114   | ₩<br>₩        | 44 44         | 章<br>**      | 1<br>1          |                                   | 11           | 2                                          | 量            |               |
| 5-2 3                                      |       | No.                 |               | -            | c                        | N                                 | e                 | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -             | d,            | u             | 0            | ç               | 0                                 | t            |                                            | o            | >             |

注) 1 %.の緩掛け部分は東京電力株式会社福島第一原子力発電所から半径5lm未満の地域 2 「一」: 久湖

 $^{144}$ Ce B B B B B Ð 2 B R 2  $\mathbb{R}$ B 8 B B B B B B 2 8 M 2 2  $\exists$ 2  $\exists$ R  $\exists$ 2 8 2  $^{137}\mathrm{Cs}$ 0.006 0.003 0.009 0.006 0.004 0.004 N 8 N ND ND B N 8 9 9 R 2 2 8  $\Box$ 9 N B Ð 2 2  $\exists$ 9 9 9 N ND 8 8 8  $\Box$ ND ND  $\Box$  $\mathbb{R}$ 2  $\mathbb{R}$ ND N 2 N  $\Box$  $\mathbb{R}$  $\mathbb{R}$  $\mathbb{R}$  $\mathbb{R}$  $\mathbb{R}$ 8 8 2  $\mathbb{R}$  $\mathbb{R}$  $\mathbb{R}$ N  $\mathbb{R}$ 2 8 2  $\mathbb{R}$ 2 2  $\exists$  $\supseteq$  $\exists$ 2  $\mathbb{R}$  $\supseteq$ 2 2  $\exists$  $\exists$  $\exists$  $\mathbb{R}$  $\exists$  $\exists$ B  $\mathbb{R}$ 2 2 2 2 2 9 9 2 N  $\mathbb{R}$  $\Box$  $^{106}\mathrm{Ru}$ N 8 8 8 N ND  $\, \mathbb{R}$ 8 8  ${\mathbb R}$ N  $\exists$ N  $\mathbb{R}$  $\, \mathbb{R}$ 8  $\, \mathbb{R}$ 8 9 8 N  $\mathbb{R}$ 9 8  $\exists$ (mBq/m<sup>3</sup>) R 8  $\exists$ ND  $\exists$ 8  $\exists$  $\mathbb{R}$ 2 B B 2 N  $\Box$  $\mathbb{R}$ R  $\mathbb{R}$ N 2 2  $\exists$ N  $\exists$ N 8  $\mathbb{R}$ 8  $\exists$ 麼  $^{95}\!\mathrm{Zr}$ 包包  $\mathbb{R}$  $\exists$  $\mathbb{R}$  $\mathbb{N}$  $\exists$  $\exists$  $\supseteq$ 2 2 B  $\mathbb{R}$  $\mathbb{N}$ 日日  $\supseteq$  $\exists$  $\exists$ 日日  $\exists$  $\exists$  $\mathbb{R}$ 2  $\mathbb{R}$ 2 8  $\exists$ B B  $\exists$ 種 8 2 ND 9 9 B 8888  $\mathbb{R}$ 2 2 9 R B N 2 2 ND 9 9 N 9 8 8 8 ND ND R R 2 8 2 B 8 R ND B 8 2 9 Ð N B N 2 B B 2 ND N 9 B B B N 8 B 8  $\exists$ 2 8 2 B  $\exists$ 8 2 2  $\exists$ 2  $\exists$ R B 2  $\exists$  $\exists$ N  $\exists$ 2 B  $\exists$  $\Theta$ 2 2  $\exists$ eq $\exists$ 2 B  $\exists$ 2 54Mn 2  $\mathbb{R}$  $\mathbb{R}$  $\Box$ 9 B N 8 ND ND  $\mathbb{R}$ B 2 9 R 8 2 8  $\exists$ 8 8  $\exists$ 8 8 8 8 ND N 8 ND 8 8  $^{51}\mathrm{Cr}$ ND 8  $\mathbb{R}$ 2 8 8 2  $\Box$ ND  $\mathbb{R}$ 2 2  $\mathbb{R}$ 8 2 8 ND  $\exists$ 8 2 N  $\exists$  $\mathbb{R}$ 8  $\exists$ N 2  $\exists$ 8 8 2, R5. 11. 24,7 R5. 11. 17 R5. 11. 29 R5. 10. R5. 10. R5. 11. R5. 12. R5. 10. R5. 10. R5. 11. R5. 12. 6 R5. 10. R5. 11. 9 7 ×. 5 9 7  $\infty$ 6 5 9 7 ∞. 5. 6 12. R5. R6. R5. R5. R6. R6. R5. R5. 華 ? 7 ? 7 ? ? ? 7 7 ? ? 7 ? ? ? ? ? ? 7 ? ? ? ? 岳 R5. 10. 1 R5. 11. 15 29 R5. 11. 22 欧 R5. 10. 4. R5. 12. R5. 11. 6 R5. 11. 5. R5. 10. R5. 11. 4 5. 9 7  $\infty$ 9. R5. 10. R5. 12. 5. 6. 7  $\infty$ R5. 10. 4. 9 7. ∞. 9. R5.11. R5. 12. R5. (連続ダストモニタ) (連続ダストモニタ) (連続ダストモニタ) みやこじうまあらいど 都路馬洗戸 # ~ 三 柘 垣 型 いわき市 田村市 広野町 \_ 2 3 %

5-2-2(1) 大気浮遊じんの核種濃度

|     | 1                   | 1                                            |                    |                    |                  |                    | 颒                | 種機                 | 度 (mBq/m³) | m <sup>3</sup> )  |                     |             |                     |                     |
|-----|---------------------|----------------------------------------------|--------------------|--------------------|------------------|--------------------|------------------|--------------------|------------|-------------------|---------------------|-------------|---------------------|---------------------|
| No. | 地点名                 | (共) (本) (本) (本) (本) (本) (本) (本) (本) (本) (本   | $^{51}\mathrm{Cr}$ | $^{54}\mathrm{Mn}$ | <sub>58</sub> Co | $^{59}\mathrm{Fe}$ | OO <sub>09</sub> | $^{95}\mathrm{Zr}$ | 95 N       | <sup>106</sup> Ru | $^{125}\mathrm{Sb}$ | $^{134}$ Cs | $^{137}\mathrm{Cs}$ | $^{144}\mathrm{Ce}$ |
|     |                     | R5. 4. 1 $\sim$ R5. 5. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.012               | ND                  |
|     |                     | R5. 5. 1 $\sim$ R5. 6. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
|     |                     | R5. 6. 1 $\sim$ R5. 7. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
|     | 20°                 | R5. 7. 1 ~ R5. 8. 1                          | QN                 | ND                 | N N              | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | N                   |
| 4   | 権薬町 木戸ダム            | R5. 8. 1 $\sim$ R5. 9. 1                     | N N                | QN                 | N N              | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | N)                  |
|     | (連続ダストモニタ)          | $=^{\beta}$ R5. 9. 1 $\sim$ R5. 10. 1        | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
|     |                     | R5.10. 1 $\sim$ R5.11. 1                     |                    | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
|     |                     | R5.11. 1 ~ R5.12. 1                          | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
|     |                     | R5. 12. 1 $\sim$ R6. 1. 1                    | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.007               | ND                  |
|     |                     | R5. 4. 1 $\sim$ R5. 5. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.083               | ND                  |
|     |                     | R5. 5. 1 $\sim$ R5. 6. 1                     |                    | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.076               | ND                  |
|     |                     | R5. 6. 1 $\sim$ R5. 7. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | QN                  | ND          | 0.043               | ND                  |
|     | 1, 17 38 74         | R5. 7. 1 $\sim$ R5. 8. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.049               | ND                  |
| ro  | 大                   | $_{\odot}$ R5. 8. 1 $\sim$ R5. 9. 1          | ND                 | QN                 | ON               | ND                 | ND               | ND                 | ND         | ND                | QN                  | ND          | 0.018               | ND                  |
|     | (連続タストナニタ)          | $=8.1$ R5. 9. 1 $\sim$ R5. 10. 1             | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.016               | ND                  |
|     |                     | R5.10. 1 $\sim$ R5.11. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.022               | ND                  |
|     |                     | R5.11. 1 $\sim$ R5.12. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.022               | ND                  |
|     |                     | R5.12. 1 $\sim$ R6. 1. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.011               | ND                  |
|     |                     | R5. 4. 1 $\sim$ R5. 5. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.025               | ND                  |
|     |                     | R5. 5. 1 $\sim$ R5. 6. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.014               | ND                  |
|     |                     | R5. 6. 1 $\sim$ R5. 7. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.012               | ND                  |
|     | 4 E                 | R5. 7. 1 $\sim$ R5. 8. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.018               | ND                  |
| 9   |                     | R5. 8. 1 ~ R5. 9. 1                          | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.018               | ND                  |
|     | (連続タストモニタ)          | $=^{\mathcal{A}_1}$ R5. 9. 1 $\sim$ R5.10. 1 | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.018               | ND                  |
|     |                     | R5.10. 1 $\sim$ R5.11. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.025               | ND                  |
|     |                     | R5.11. 1 ~ R5.12. 1                          | ND                 | ND                 | N                | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.012               | ND                  |
|     |                     | R5.12. 1 $\sim$ R6. 1. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.019               | ND                  |
|     |                     | R5. 4. 1 $\sim$ R5. 5. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.057               | ND                  |
|     |                     | 5. 1 $\sim$ R5.                              |                    | ND                 | N                | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.026               | ND                  |
|     |                     | R5. 6. 1 $\sim$ R5. 7. 1                     | N                  | ND                 | N                | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.008               | ND                  |
|     |                     | R5. 7. 1 ~ R5. 8. 1                          | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
| -   | にある 下川内             | R5. 8. 1 $\sim$ R5. 9. 1                     | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
|     | //  1713 (連続ダストモニタ) | $=\beta$ ) R5. 9. 1 $\sim$ R5. 10. 1         | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.007               | ND                  |
|     |                     | R5.10. 1 $\sim$ R5.11. 1                     | ND                 | ND                 | N                | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
|     |                     | R5.11. 1 ~ R5.11.28                          | ND                 | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.009               | ND                  |
|     |                     | $28 \sim R5.12.$                             | , ,                | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
|     |                     | R5.12. 4 ~ R6. 1. E                          | 5, ND              | ND                 | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.005               | ND                  |

|     |                                         | 1                         |                    |                  |                  |                    | 颒                              | 種濃                 | 度 (mBq/m³)         | (m <sup>3</sup> ) |                     |             |                     |                     |
|-----|-----------------------------------------|---------------------------|--------------------|------------------|------------------|--------------------|--------------------------------|--------------------|--------------------|-------------------|---------------------|-------------|---------------------|---------------------|
|     | 地点名                                     | 採 取 期 間                   | $^{51}\mathrm{Cr}$ | <sup>54</sup> Mn | <sub>58</sub> Co | $^{59}\mathrm{Fe}$ | $^{\mathrm{o}\mathrm{O}_{09}}$ | $^{95}\mathrm{Zr}$ | $^{65}\mathrm{Nb}$ | <sup>106</sup> Ru | $^{125}\mathrm{Sb}$ | $^{134}$ Cs | $^{137}\mathrm{Cs}$ | $^{144}\mathrm{Ce}$ |
|     |                                         | R5. 4. 1 $\sim$ R5. 5. 1  | ND                 | ND               | ND               | ND                 | ΩN                             | ΩN                 | ND                 | ND                | ND                  | ΩN          | 0.14                | ND                  |
|     |                                         | R5. 5. 1 $\sim$ R5. 6. 1  | ND                 | ND               | - N              | ND                 | ND                             | R                  | ND                 | ND                | N)                  | N           | 0.047               | ND<br>ND            |
|     |                                         | R5. 6. 1 $\sim$ R5. 7. 1  | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.027               | ND                  |
|     | @<br>#<br>#                             | R5. 7. 1 $\sim$ R5. 8. 1  | ND                 | ND               | ND               | ND                 | ΩN                             | ΩN                 | ND                 | ND                | ND                  | ΩN          | 0.023               | ND                  |
| 大熊町 | 新 七 · · · · · ·                         | R5. 8. 1 ~ R5. 9. 1       | ND                 | ND               | ON               | ND                 | ΩN                             | ΩN                 | QN                 | ND                | ON                  | ΩN          | 0.016               | ND                  |
|     | (連続タストモニタ)                              | R5. 9. 1 $\sim$ R5. 10. 1 | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.033               | ND                  |
|     |                                         | R5.10. 1 $\sim$ R5.11. 1  | ND                 | ND               | ND               | ND                 | ΩN                             | ON                 | ND                 | ND                | ND                  | ND          | 0.022               | ND                  |
|     |                                         | R5.11. 1 $\sim$ R5.12. 1  | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.025               | ND                  |
|     |                                         | R5.12. 1 $\sim$ R6. 1. 1  | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.039               | ND                  |
|     |                                         | R5. 4. 1 $\sim$ R5. 5. 1  | ND                 | ND               | ND               | ND                 | ΩN                             | ΩN                 | ND                 | ND                | ND                  | 0.009       | 0.25                | ND                  |
|     |                                         | R5. 5. 1 $\sim$ R5. 6. 1  | ND                 | ND               | N                | ND                 | ΩN                             | ŒN                 | QN                 | ND                | ND                  | ΩN          | 0.17                | ND                  |
|     |                                         | 6. 1                      | ND                 | ND               | ON               | ND                 | ΩN                             | ΩN                 | QN                 | ND                | ON                  | ΩN          | 0.11                | ND                  |
|     | 유<br>사<br>사<br>사                        | R5. 7. 1 $\sim$ R5. 8. 1  | ND                 | ND               | N N              | ND                 | ND                             | N N                | ND                 | ND                | ND                  | ND          | 0.24                | ND                  |
| 大熊町 | 米 米 ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ | R5. 8. 1 ~ R5. 9. 1       | ND                 | ND               | ON               | ND                 | ΩN                             | ΩN                 | QN                 | ND                | ON                  | ΩN          | 0.18                | ND                  |
|     | (連続タストモニタ)                              | R5. 9. 1 $\sim$ R5. 10. 1 | ND                 | ND               | ND               | ND                 | QN                             | ΩN                 | ND                 | ND                | ND                  | QN          | 0.23                | ND                  |
|     |                                         | R5.10. 1 $\sim$ R5.11. 1  | ND                 | ND               | ND               | ND                 | ΩN                             | ΩN                 | ND                 | ND                | ND                  | QN          | 0.37                | ND                  |
|     |                                         | R5.11. 1 $\sim$ R5.12. 1  | ND                 | ND               | ND               | ND                 | ND                             | ΩN                 | ND                 | ND                | ND                  | QN          | 0.30                | ND                  |
|     |                                         | R5.12. 1 $\sim$ R6. 1. 1  | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.40                | ND                  |
|     |                                         | R5. 4. 1 $\sim$ R5. 5. 1  | ND                 | ND               | ND               | ND                 | QN                             | ΩN                 | ND                 | ND                | ND                  | ΩN          | 0.54                | ND                  |
|     |                                         | R5. 5. 1 $\sim$ R5. 6. 1  | ND                 | ND               | ND               | ND                 | ND                             | MD                 | ND                 | ND                | ND                  | ND          | 0.13                | ND                  |
|     |                                         | R5. 6. 1 $\sim$ R5. 7. 1  | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.21                | ND                  |
|     | 本をのおり                                   | R5. 7. 1 $\sim$ R5. 8. 1  | ND                 | ND               | N                | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.25                | ND                  |
| 双葉町 | 日が世代                                    | R5. 8. 1 $\sim$ R5. 9. 1  | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | 0.009       | 0.48                | ND                  |
|     | (埋続タストセニタ)                              | R5. 9. 1 $\sim$ R5. 10. 1 | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.094               | ND                  |
|     |                                         | R5.10. 1 $\sim$ R5.11. 1  | ND                 | ND               | ND               | ND                 | ND                             | ON                 | ND                 | ND                | ND                  | ND          | 0.13                | ND                  |
|     |                                         | R5.11. 1 $\sim$ R5.12. 1  | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.16                | ND                  |
|     |                                         | R5.12. 1 $\sim$ R6. 1. 1  | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.090               | ND                  |
|     |                                         | R5. 4. 1 $\sim$ R5. 5. 1  | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.056               | ND                  |
|     |                                         | R5. 5. 1 $\sim$ R5. 6. 1  | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.024               | ND                  |
|     |                                         | R5. 6. 1 $\sim$ R5. 7. 1  | ND                 | ND               | ND               | ND                 | ND                             | QN                 | ND                 | ND                | ND                  | ΩN          | 0.020               | ND                  |
|     | き<br>は<br>ご                             | R5. 7. 1 $\sim$ R5. 8. 1  | ND                 | ND               | ND               | ND                 | ND                             | QN                 | ND                 | ND                | ND                  | ΩN          | 0.030               | ND                  |
| 浪江町 | ※ 古 編                                   | R5. 8. 1 $\sim$ R5. 9. 1  | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.016               | ND                  |
|     | (連続タストモニタ)                              | R5. 9. 1 $\sim$ R5. 10. 1 | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.034               | ND                  |
|     |                                         | R5.10. 1 $\sim$ R5.11. 1  | ND                 | ND               | ND               | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ON          | 0.036               | ND                  |
|     |                                         | R5.11. 1 $\sim$ R5.12. 1  | ND                 | ND               | N                | ND                 | ND                             | ND                 | ND                 | ND                | ND                  | ND          | 0.030               | ND                  |
|     |                                         | R5.12. 1 $\sim$ R6. 1. 1  | ND                 | ND               | ND               | ND                 | QN                             | ŒN                 | ND                 | ND                | ND                  | ND          | 0.022               | ND                  |

| :    | .1                                        | 1                               |                    | J          |                  | Ī                  | 颒                | 種濃                 | 度 (mBq/m³) | m <sup>3</sup> )  |                     |                   |       |             |
|------|-------------------------------------------|---------------------------------|--------------------|------------|------------------|--------------------|------------------|--------------------|------------|-------------------|---------------------|-------------------|-------|-------------|
| No.  | 地 京 名                                     | 採 取 朔 面                         | $^{51}\mathrm{Cr}$ | $^{54}$ Mn | <sub>58</sub> Co | $^{59}\mathrm{Fe}$ | оЭ <sub>09</sub> | $^{95}\mathrm{Zr}$ | 95Nb       | <sup>106</sup> Ru | $^{125}\mathrm{Sb}$ | $^{134}\text{Cs}$ | 137Cs | $^{144}$ Ce |
|      |                                           | R5. 4. 1 $\sim$ R5. 5. 1        | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.093 | ND          |
|      |                                           | R5. 5. 1 $\sim$ R5. 6. 1        | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.093 | ND          |
|      |                                           | R5. 6. 1 $\sim$ R5. 7. 1        | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.11  | ND          |
|      |                                           | R5. 7. 1 $\sim$ R5. 8. 1        | ND                 | QN         | ND               | ND                 | ND               | N                  | ND         | ND                | ND                  | ND                | 0.083 | N           |
|      | おおき 大枯ダム                                  | R5. 8. 1 $\sim$ R5. 9. 1        | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.056 | ND          |
|      | (文に…) (連続ダストモニタ)                          | ) R5. 9. 1 $\sim$ R5. 10. 1     | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.10  | ND          |
|      |                                           | R5.10. 1 $\sim$ R5.11. 1        | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.093 | ND          |
|      |                                           | R5.11. 1 $\sim$ R5.11.25        | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.024 | ND          |
|      |                                           | R5.11.27 $\sim$ R5.12. $^{*7}$  | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.073 | ND          |
|      |                                           | R5.12. 4 $\sim$ R6. 1. 5        | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.067 | ND          |
|      |                                           | R5. 4. 1 $\sim$ R5. 5. 1        | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | ND    | ND          |
|      |                                           | R5. 5. 1 $\sim$ R5. 6. 1        | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.010 | ND          |
|      |                                           | R5. 6. 1 $\sim$ R5. 7. 1        | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.008 | ND          |
|      | 주)<br>0<br>호:                             | R5. 7. 1 $\sim$ R5. 8. 1        | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | ND    | ND          |
| 13   | 夏 湯 湯 三十二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二 | R5. 8. 1 ~ R5. 9. 1             | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | ND    | ND          |
|      | (連続ダストモニタ)                                | (R5. 9. 1 $\sim$ R5. 10. 1      | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | ND    | ND          |
|      |                                           | R5.10. 1 $\sim$ R5.11. 1        | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | ND    | ND          |
|      |                                           | R5.11. 1 $\sim$ R5.12. 1        | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.005 | ND          |
|      |                                           | R5.12. 1 $\sim$ R6. 1. 1        | ND                 | ND         | ND               | ND                 | ND               | M                  | ND         | ND                | ND                  | ND                | 0.005 | M           |
|      |                                           | R5. 4. 1 $\sim$ R5. 5. 1        | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.017 | ND          |
|      |                                           | R5. 5. 1 $\sim$ R5. 6. 1        | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | ND    | ND          |
|      |                                           | R5. 6. 1 $\sim$ R5. 7. 1        | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.010 | ND          |
|      |                                           | R5. 7. 1 $\sim$ R5. 8. 1        | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.005 | ND          |
|      | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4     | R5. 8. 1 $\sim$ R5. 9. 1        | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.011 | ND          |
| 14 南 | 泉 沢<br>南相馬市                               | R5. 9. 1 $\sim$ R5. 10. 1       | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.007 | ND          |
|      | (連続ダストモニタ)                                | (R5.10. 1 $\sim$ R5.10. 2       | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | ND    | ND          |
|      |                                           | R5.10. 2 $\sim$ R5.11. $1^{*7}$ | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.018 | ND          |
|      |                                           | R5.11. 1 $\sim$ R5.11.10 $^*$ 7 | ND                 | ND         | N)               | N                  | ND               | N                  | ND         | ND                | N                   | ND                | 0.018 | N           |
|      |                                           | R5.11. 9 $\sim$ R5.12. 1        | ND                 | ND         | R                | N                  | N                | R                  | ND         | ND                | R                   | ND                | 0.008 | N           |
|      |                                           | R5.12. 1 $\sim$ R6. 1. 1        | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | ND    | ND          |
|      |                                           | R5. 4. 1 $\sim$ R5. 5. 1        | ND                 | ND         | N                | N                  | ND               | N                  | ND         | ND                | N                   | ND                | 0.014 | N           |
|      |                                           | R5. 5. 1 $\sim$ R5. 6. 1        | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                | 0.013 | ND          |
|      |                                           | R5. 6. 1 $\sim$ R5. 7. 1        | ND                 | ND         | N                | N                  | ND               | R                  | ND         | ND                | N                   | ND                | ND    | N           |
|      | がいる。                                      | R5. 7. 1 $\sim$ R5. 8. 1        | ND                 | ND         | N                | N                  | ND               | N                  | ND         | ND                | N                   | ND                | ND    | N           |
| 15 南 | 南相馬市(本体派)、「一、))                           | R5. 8. 1 ~ R5. 9. 1             | ND                 | ND         | N                | ND                 | ND               | N                  | ND         | ND                | N                   | ND                | 0.012 | N           |
|      | (単続タストナニタ)                                | R5. 9. 1 $\sim$                 | ND                 | ND         | N                | ND                 | ND               | N                  | ND         | ND                | ND                  | ND                | 0.010 | N           |
|      |                                           | $\frac{1}{2}$                   | ND                 | QN         | ND               | ND                 | ND               | N                  | ND         | ND                | ND                  | ND                | ND    | N           |
|      |                                           | R5.11. 1 $\sim$ R5.12. 1        | ND                 | ND         | N                | ND                 | ND               | N                  | ND         | ND                | ND                  | ND                | 0.014 | N           |
|      |                                           | R5.12. 1 $\sim$ R6. 1. 1        | ND                 | ND         | ND               | ND                 | ND               | N                  | ND         | ND                | ND                  | ND                | 0.009 | N           |

|                     | 1                                    |                    |                  |                  |                    | 葱                | 種濃                 | 度 (mBq/m³) | (m <sup>3</sup> ) |                     |                     |                     |                     |
|---------------------|--------------------------------------|--------------------|------------------|------------------|--------------------|------------------|--------------------|------------|-------------------|---------------------|---------------------|---------------------|---------------------|
| 吊名                  | 採 取 期 面                              | $^{51}\mathrm{Cr}$ | <sup>54</sup> Mn | <sub>58</sub> Co | $^{59}\mathrm{Fe}$ | OO <sub>09</sub> | $^{95}\mathrm{Zr}$ | 95Nb       | <sup>106</sup> Ru | $^{125}\mathrm{Sb}$ | $^{134}\mathrm{Cs}$ | $^{137}\mathrm{Cs}$ | $^{144}\mathrm{Ce}$ |
|                     | R5. 4. 1 $\sim$ R5. 5. 1             | ND                 | QN               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.012               | ND                  |
|                     | R5. 5. 1 $\sim$ R5. 6. 1             | ND                 | ND               | ND<br>ND         | ND                 | ND               | N)                 | ND         | ND                | ND<br>ND            | ND                  | 0.020               | ND                  |
|                     | R5. 6. 1 $\sim$ R5. 7. 1             | ND                 | ND               | ND<br>ND         | ND                 | ND               | R                  | ND         | N                 | N)                  | ND                  | 0.013               | ND                  |
| いたなられ               | R5. 7. 1 ~ R5. 8. 1                  | ND                 | ND               | ND<br>ND         | ND                 | ND               | R                  | ND         | N                 | N N                 | ND                  | ND                  | ND                  |
| 4 年 2 元             | R5. 8. 1 ~ R5. 9. 1                  | ND                 | ΩN               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
| (連続ダストモニタ)          | $=\beta$ ) R5. 9. 1 $\sim$ R5. 10. 1 | ND                 | ΩN               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 10. 1 $\sim$ R5. 11. 1           | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5.11. 1 $\sim$ R5.12. 1             | ND                 | ΩN               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.007               | ON                  |
|                     | R5. 12. 1 $\sim$ R6. 1. 1            | ND                 | ΩN               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 4. 1 ~ R5. 5. 1                  | ND                 | QN               | ND               | ND                 | ND               | N                  | ND         | ND                | ND                  | ND                  | ND                  | ON                  |
|                     | R5. 5. 1 $\sim$ R5. 6. 1             | ND                 | ΩN               | N)               | ND                 | ND               | N                  | ND         | ND                | N                   | ND                  | 0.014               | ND                  |
|                     | 6. 1                                 | ND                 | ΩN               | ON               | ND                 | ND               | N                  | ND         | ND                | N                   | ND                  | ND                  | ND                  |
| 유]<br>#U<br>#K      | R5. 7. 1 ~ R5. 8. 1                  | ND                 | ND               | ND<br>ND         | ND                 | ND               | R                  | ND         | N                 | N N                 | ND                  | ND                  | ND                  |
| 田 :                 | R5. 8. 1 ~ R5. 9. 1                  | ND                 | ΩN               | ON               | ND                 | ND               | N                  | ND         | ND                | ND                  | ND                  | ND                  | ON                  |
| (連続ダストモニタ)          | $=\beta$ ) R5. 9. 1 $\sim$ R5. 10. 1 | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 10. 1 $\sim$ R5. 11. 1           | ND                 | QN               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 11. 1 $\sim$ R5. 12. 1           | ND                 | QN               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 12. 1 $\sim$ R6. 1. 1            | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 4. 1 $\sim$ R5. 5. 1             | ND                 | QN               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 5. 1 $\sim$ R5. 6. 1             | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 6. 1 $\sim$ R5. 7. 1             | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
| ひさらはま久入が浜           | R5. 7. 1 $\sim$ R5. 8. 1             | ND                 | ND               | ND               | ND                 | ND               | M                  | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
| (リアルタイム             | $_{\Delta}$ R5. 8. 1 $\sim$ R5. 9. 1 | ND                 | ΩN               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
| ダストモニタ)             | (1) R5. 9. 1 $\sim$ R5. 10. 1        | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 10. 1 $\sim$ R5. 11. 1           | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5.11. 1 $\sim$ R5.12. 1             | ND                 | ΩN               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5.12. 1 $\sim$ R6. 1. 1             | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 4. 1 $\sim$ R5. 5. 1             | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 5. 1 $\sim$ R5. 6. 1             | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 6. 1 $\sim$ R5. 7. 1             | ND                 | ΩN               | ON               | ND                 | ND               | N                  | ND         | ND                | ND                  | ND                  | ND                  | ON                  |
| Listiti シリ<br>下 桶 売 | R5. 7. 1 $\sim$ R5. 8. 1             | ND                 | ΩN               | ON               | ND                 | ND               | N                  | ND         | ND                | ND                  | ND                  | ND                  | ON                  |
| (リアルタイム             | $_{\Delta}$ R5. 8. 1 $\sim$ R5. 9. 1 | ND                 | ΩN               | ON               | ND                 | ND               | N                  | ND         | ND                | ND                  | ND                  | ND                  | ON                  |
| ダストモニタ)             | (1) R5. 9. 1 $\sim$ R5. 10. 1        | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 10. 1 $\sim$ R5. 11. 1           | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5.11. 1 $\sim$ R5.12. 1             | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND                  |
|                     | R5. 12. 1 $\sim$ R6. 1. 1            | ND                 | ΩN               | ND               | ND                 | ND               | N                  | ND         | ND                | ND                  | ND                  | ND                  | ND                  |

| 取期間                |                |                  |                    | 颒                | 種濃                 | 度 (mBq/m³) |                   |                     |             |                     |                     |
|--------------------|----------------|------------------|--------------------|------------------|--------------------|------------|-------------------|---------------------|-------------|---------------------|---------------------|
| $^{51}\mathrm{Cr}$ | $r$ $^{54}$ Mn | <sub>58</sub> Co | $^{59}\mathrm{Fe}$ | оЭ <sub>09</sub> | $^{95}\mathrm{Zr}$ | $^{96}$ Np | <sup>106</sup> Ru | $^{125}\mathrm{Sb}$ | $^{134}$ Cs | $^{137}\mathrm{Cs}$ | $^{144}\mathrm{Ce}$ |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
|                    | ND ND          | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
| N                  | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
| R                  | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
| N                  | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | M                   | ND          | ND                  | ND                  |
| ND                 | ND             | MD               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
| ND                 | ND             | MD               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | ND                  | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.037               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.035               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ON                 | ND         | ND                | ND                  | ND          | 0.11                | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ON                 | ND         | ND                | ND                  | ND          | 0.078               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ON                 | ND         | ND                | ND                  | ND          | 090.0               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.16                | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | QN                 | ND         | ND                | ND                  | ND          | 0.12                | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.084               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.061               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.035               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.084               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.16                | ND                  |
| ND                 | ND             | N                | ND                 | ND               | ND                 | ND         | ND                | N                   | ND          | 0.15                | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.096               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.20                | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.088               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.057               | ND                  |
| ND                 | ND             | MD               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.061               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.037               | ND                  |
| ND                 | QN             | ND               | ND                 | ND               | ON                 | ND         | ND                | ND                  | ND          | 0.059               | ND                  |
| ND                 | ND             | N N              | N                  | ND               | ND                 | ND         | N                 | N N                 | ND          | 0.10                | ND                  |
| ND                 | N              | R                | N)                 | ND               | N N                | ND         | N N               | R                   | ND          | 0.088               | N N                 |
| N                  | QN             | © N              | ND                 | ND               | N N                | ND         | N                 | N N                 | ND          | 0.082               | N                   |
| N                  | N              | R                | ND                 | ND               | N N                | ND         | N                 | N N                 | ND          | 0.15                | N                   |
| ND                 | QN             | ND               | ND                 | ND               | QN                 | ND         | ND                | ND                  | ND          | 0.092               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND          | 0.070               | ND                  |
| ND                 | ND             | ND               | ND                 | ND               | QN                 | ND         | ND                | ND                  | ND          | 0.048               | ND                  |

| 1                                    | 1                          |                    |            |                  |                    | 核                | 種濃                 | 度 (mBq/m³)         | m <sup>3</sup> ) |                     |                   |                     |                   |
|--------------------------------------|----------------------------|--------------------|------------|------------------|--------------------|------------------|--------------------|--------------------|------------------|---------------------|-------------------|---------------------|-------------------|
| 4                                    | 朱 牧 郑 间                    | $^{51}\mathrm{Cr}$ | $^{54}$ Mn | <sub>58</sub> Co | $^{59}\mathrm{Fe}$ | о <sub>О,9</sub> | $^{95}\mathrm{Zr}$ | $^{95}\mathrm{Nb}$ | 106Ru            | $^{125}\mathrm{Sb}$ | $^{134}\text{Cs}$ | $^{137}\mathrm{Cs}$ | <sup>144</sup> Ce |
|                                      | R5. 4. 1 $\sim$ R5. 5. 1   | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ND                | ND                  | ND                |
|                                      | R5. 5. 1 $\sim$ R5. 6. 1   | ND                 | ND         | N N              | ND                 | ND               | N N                | ND                 | ND               | Ø                   | QN                | 0.051               | R                 |
|                                      | R5. 6. 1 $\sim$ R5. 7. 1   | ND                 | ON         | ND               | ND                 | ND               | ND                 | ND                 | ND               | N N                 | QN                | 0.13                | R                 |
| かみはとり上羽馬                             | R5. 7. 1 $\sim$ R5. 8. 1   | ND                 | ON         | ND               | ND                 | ND               | ND                 | ND                 | ND               | N N                 | QN                | 0.14                | R                 |
| (リアルタイム                              | R5. 8. 1 $\sim$ R5. 9. 1   | ND                 | ON         | ND               | ND                 | ND               | ND                 | ND                 | ND               | N N                 | QN                | 0.087               | R                 |
| ダストモニタ)                              | R5. 9. 1 $\sim$ R5. 10. 1  | ND                 | ON         | ND               | ND                 | ND               | ND                 | ND                 | ND               | N N                 | QN                | 0.23                | N                 |
|                                      | R5.10. 1 $\sim$ R5.11. 1   | ND                 | QN         | QN               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | QN                | 0.089               | ND                |
|                                      | R5.11. 1 $\sim$ R5.12. 1   | ND                 | QN         | QN               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | QN                | 0.045               | ND                |
|                                      | R5.12. 1 $\sim$ R6. 1. 1   | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ΩN                | 0.031               | ND                |
|                                      | R5. 4. 1 $\sim$ R5. 5. 1   | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ΩN                | 0.046               | N                 |
|                                      | R5. 5. 1 $\sim$ R5. 6. 1   | ND                 | ND         | N N              | ND                 | ND               | N N                | ND                 | ND               | Ø                   | QN                | 0.083               | R                 |
|                                      | R5. 6. 1 $\sim$ R5. 7. 1   | ND                 | ND         | N N              | ND                 | ND               | N N                | ND                 | ND               | © N                 | QN                | 0.062               | R                 |
| ************************************ | R5. 7. 1 $\sim$ R5. 8. 1   | ND                 | ND         | ND<br>ND         | ND                 | ND               | ND                 | ND                 | ND               | N)                  | ND                | 0.070               | N                 |
| (リアルタイム                              | R5. 8. 1 $\sim$ R5. 9. 1   | ND                 | ON         | ND               | ND                 | ND               | ND                 | ND                 | ND               | N N                 | QN                | 0.047               | R                 |
| ダストモニタ)                              | R5. 9. 1 $\sim$ R5. 10. 1  | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | QN                | 0.079               | ND                |
|                                      | R5.10. 1 $\sim$ R5.11. 1   | ND                 | QN         | QN               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | QN                | 0.031               | ND                |
|                                      | R5.11. 1 $\sim$ R5.12. 1   | ND                 | QN         | ΩN               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ΩN                | 0.029               | ND                |
|                                      | R5.12. 1 $\sim$ R6. 1. 1   | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | QN                | ND                  | ND                |
|                                      | R5. 4. 1 $\sim$ R5. 5. 1   | ND                 | QN         | QN               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ΩN                | 0.055               | ND                |
|                                      | R5. 5. 1 $\sim$ R5. 6. 1   | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ND                | 0.062               | ND                |
|                                      | R5. 6. 1 $\sim$ R5. 7. 1   | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ND                | 0.13                | ND                |
| よこかむ<br>横川ダム                         | R5. 7. 1 $\sim$ R5. 8. 1   | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ND                | 0.089               | ND                |
| (リアルタイム                              | R5. 8. 1 $\sim$ R5. 9. 1   | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | QN                | 0.12                | ND                |
| ダストモニタ)                              | R5. 9. 1 $\sim$ R5. 10. 1  | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ND                | 0.17                | ND                |
|                                      | R5.10. 1 $\sim$ R5.11. 1   | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ND                | 090.0               | ND                |
|                                      | R5.11. 1 $\sim$ R5.12. 1   | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ND                | 0.036               | R                 |
|                                      | R5.12. 1 $\sim$ R6. 1. 1   | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ND                | ND                  | ND                |
|                                      | R5. 4. 3 $\sim$ R5. 5. 1   | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ND                | ND                  | ND                |
|                                      | R5. 5. 1 $\sim$ R5. 6. 1   | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ND                | 0.015               | ND                |
|                                      | R5. 6. 1 $\sim$ R5. 7. 3   | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ND                | 0.015               | ND                |
| か<br>な<br>()                         | R5. 7. 3 $\sim$ R5. 8. 1   | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | QN                | QN                  | ND                |
|                                      | R5. 8. 1 $\sim$ R5. 9. 1   | ND                 | QN         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | QN                | 0.016               | ND                |
| (タストサンフソー)                           | R5. 9. 1 $\sim$ R5. 10. 2  | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | ND                | 0.015               | ND                |
|                                      | R5. 10. 2 $\sim$ R5. 11. 1 | ND                 | ND         | ND               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | QN                | ΩN                  | ND                |
|                                      | R5.11. 1 $\sim$ R5.12. 1   | ND                 | QN         | QN               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | QN                | 0.017               | ND                |
|                                      | R5. 12. 1 $\sim$ R6. 1. 4  | ND                 | QN         | ON               | ND                 | ND               | ND                 | ND                 | ND               | ND                  | QN                | ΩN                  | N                 |

|      |                                        | 1                          |                    |                  |                  |                    | 颒                | 種濃                 | 度 (mBq/m³)         | m <sup>3</sup> )  |                     |             |                     |             |
|------|----------------------------------------|----------------------------|--------------------|------------------|------------------|--------------------|------------------|--------------------|--------------------|-------------------|---------------------|-------------|---------------------|-------------|
| No.  | 地点名                                    | 採 取 期 間                    | $^{51}\mathrm{Cr}$ | <sup>54</sup> Mn | <sub>58</sub> Co | $^{59}\mathrm{Fe}$ | OO <sub>09</sub> | $^{95}\mathrm{Zr}$ | $_{ m 6N}_{ m 26}$ | <sup>106</sup> Ru | $^{125}\mathrm{Sb}$ | $^{134}$ Cs | $^{137}\mathrm{Cs}$ | $^{144}$ Ce |
|      |                                        | R5. 4. 3 $\sim$ R5. 5. 1   | ND                 | ND               | ND               | ND                 | ND               | ΩN                 | ND                 | ND                | ND                  | ND          | ND                  | ND          |
|      |                                        | R5. 5. 1 $\sim$ R5. 6. 1   | ND                 | ND               | R                | N                  | ND               | ND<br>ND           | ND                 | ND                | R                   | N           | ND                  | R           |
|      |                                        | R5. 6. 1 $\sim$ R5. 7. 3   | ND                 | ND               | N N              | N                  | ND               | ND                 | ND                 | ND                | N N                 | N           | ND                  | N N         |
|      | おまれます。                                 | R5. 7. 3 $\sim$ R5. 8. 1   | ND                 | ND               | ND               | ND                 | ND               | QN                 | ND                 | ND                | ND                  | ND          | 0.018               | ND          |
| 28   | は 田 団 神経無に ジェッジ・ジェッション                 | R5. 8. 1 $\sim$ R5. 9. 1   | ND                 | ND               | ND               | ND                 | ND               | QN                 | ND                 | ND                | ND                  | ND          | ND                  | ND          |
|      | (タストサンプラー)                             | R5. 9. 1 $\sim$ R5. 10. 2  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.027               | ND          |
|      |                                        | R5.10. 2 $\sim$ R5.11. 1   | ND                 | ND               | ND               | ND                 | ND               | QN                 | ND                 | ND                | ND                  | ND          | ND                  | ND          |
|      |                                        | R5.11. 1 $\sim$ R5.12. 1   | ND                 | ND               | ND               | ND                 | ND               | QN                 | ND                 | ND                | ND                  | ND          | ND                  | ND          |
|      |                                        | R5.12. 1 $\sim$ R6. 1. 4   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.015               | ND          |
|      |                                        | R5. 4. 3 $\sim$ R5. 5. 1   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | ND                  | ND          |
|      |                                        | R5. 5. 1 $\sim$ R5. 6. 1   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.019               | ND          |
|      |                                        | 6. 1                       | ND                 | ND               | N N              | N                  | ND               | ND                 | ND                 | ND                | N N                 | N           | 0.036               | N N         |
|      | みやでより                                  | R5. 7. 3 $\sim$ R5. 8. 1   | ND                 | ND               | N<br>N           | N                  | ND               | ND                 | ND                 | ND                | N N                 | N           | 0.036               | N N         |
| 29 棒 | 楢葉町 松 館 (漢字・) ジェーン                     | R5. 8. 1 $\sim$ R5. 9. 1   | ND                 | ND               | ND               | ND                 | ND               | QN                 | ND                 | ND                | ND                  | ND          | 0.025               | ND          |
|      | (タストサンフラー)                             | R5. 9. 1 $\sim$ R5. 10. 2  | ND                 | ND               | ND               | ND                 | ND               | QN                 | ND                 | ND                | ND                  | ND          | 0.033               | ND          |
|      |                                        | R5.10. 2 $\sim$ R5.11. 1   | ND                 | ND               | ND               | ND                 | ND               | QN                 | ND                 | ND                | ND                  | ND          | 0.018               | ND          |
|      |                                        | R5.11. 1 $\sim$ R5.12. 1   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | ND                  | N           |
|      |                                        | R5.12. 1 $\sim$ R6. 1. 4   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | ND                  | ND          |
|      |                                        | R5. 4. 3 $\sim$ R5. 5. 1   | ND                 | ND               | ND               | ND                 | ND               | QN                 | ND                 | ND                | ND                  | ND          | ND                  | ND          |
|      |                                        | R5. 5. 1 $\sim$ R5. 6. 1   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.024               | ND          |
|      |                                        | R5. 6. 1 $\sim$ R5. 7. 3   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.037               | ND          |
|      | ************************************** | R5. 7. 3 $\sim$ R5. 8. 1   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.034               | ND          |
| 30 魯 | 楢葉町が、ボーンボンディン                          | R5. 8. 1 $\sim$ R5. 9. 1   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.029               | ND          |
|      | (タストサンフカー)                             | R5. 9. 1 $\sim$ R5. 10. 2  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.052               | ND          |
|      |                                        | R5.10. 2 $\sim$ R5.11. 1   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.018               | ND          |
|      |                                        | R5.11. 1 $\sim$ R5.12. 1   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.025               | ND          |
|      |                                        | R5.12. 1 $\sim$ R6. 1. 4   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.019               | ND          |
|      |                                        | R5. 4. 3 $\sim$ R5. 5. 1   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | ND                  | ND          |
|      |                                        | R5. 5. 1 $\sim$ R5. 6. 1   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | ND                  | ND          |
|      |                                        | R5. 6. 1 $\sim$ R5. 7. 3   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.037               | ND          |
|      | 本やのおこれか                                | R5. 7. 3 $\sim$ R5. 8. 1   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.025               | ND          |
| 31   | 個国町 一一 野 日 バス・ドンプルン                    | R5. 8. 1 $\sim$ R5. 9. 1   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.026               | ND          |
|      | (ートノンサイトを)                             | R5. 9. 1 $\sim$ R5. 10. 2  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.058               | ND          |
|      |                                        | R5. 10. $2 \sim R5. 11. 1$ | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | 0.025               | ND          |
|      |                                        | R5.11. 1 $\sim$ R5.12. 1   | ND                 | ND               | N)               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | ND                  | ND          |
|      |                                        | R5.12. 1 $\sim$ R6. 1. 4   | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND                 | ND                | ND                  | ND          | ND                  | ND          |

|     |     | 1                                     | 1                         |                    |                  |                  |                    | 颒                | 種濃                 | 度 (mBq/m³) | m <sup>3</sup> )  |                     |                     |                     |             |
|-----|-----|---------------------------------------|---------------------------|--------------------|------------------|------------------|--------------------|------------------|--------------------|------------|-------------------|---------------------|---------------------|---------------------|-------------|
| No. | 扣   | 点名                                    | 採 取 期 間                   | $^{51}\mathrm{Cr}$ | <sup>54</sup> Mn | <sub>58</sub> Co | $^{29}\mathrm{Fe}$ | OO <sub>09</sub> | $^{95}\mathrm{Zr}$ | 95 N       | <sup>106</sup> Ru | $^{125}\mathrm{Sb}$ | $^{134}\mathrm{Cs}$ | $^{137}\mathrm{Cs}$ | $^{144}$ Ce |
|     |     |                                       | R5. 4. 3 $\sim$ R5. 5. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ΩN         | ND                | ND                  | ΩN                  | QN                  | ND          |
|     |     |                                       | R5. 5. 1 $\sim$ R5. 6. 1  | ND                 | ND               | © N              | ND                 | ND               | R                  | N)         | ND                | N N                 | N                   | ND                  | N           |
|     |     |                                       | R5. 6. 1 $\sim$ R5. 7. 3  | ND                 | ND               | N)               | ND                 | ND               | N N                | ND         | ND                | ND                  | ND                  | 0.030               | N           |
|     |     | しもこおりやま                               | R5. 7. 3 $\sim$ R5. 8. 1  | ND                 | ND               | N N              | ND                 | ND               | R                  | N)         | ND                | N N                 | N                   | 0.025               | N           |
| 32  | 富岡町 | 日曜上                                   | R5. 8. 1 $\sim$ R5. 9. 1  | ND                 | ND               | N)               | ND                 | ND               | N N                | ND         | ND                | ND                  | ND                  | 0.021               | N           |
|     | ٣   | (タストサンブラー)                            | R5. 9. 1 $\sim$ R5. 10. 2 | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.047               | ND          |
|     |     |                                       | R5.10. 2 $\sim$ R5.11. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND          |
|     |     |                                       | R5.11. 1 $\sim$ R5.12. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | QN         | ND                | ND                  | ΩN                  | 0.018               | ND          |
|     |     |                                       | R5.12. 1 $\sim$ R6. 1. 4  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | ND                  | ND          |
|     |     |                                       | R5. 4. 3 $\sim$ R5. 5. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ΩN         | ND                | QN                  | ΩN                  | 0.038               | ON          |
|     |     |                                       | R5. 5. 1 $\sim$ R5. 6. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ΩN         | ND                | ON                  | ΩN                  | 0.032               | ND          |
|     |     |                                       | R5. 6. 1 $\sim$ R5. 7. 3  | ND                 | ND               | ND               | ND                 | ND               | N                  | ΩN         | ND                | QN                  | ΩN                  | 0.057               | QN          |
| _   |     | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | R5. 7. 3 $\sim$ R5. 8. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ΩN         | ND                | QN                  | ΩN                  | 0.033               | ON          |
| 33  | 富岡町 | 後の禁                                   | R5. 8. 1 $\sim$ R5. 9. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ΩN         | ND                | QN                  | ΩN                  | 0.049               | ON          |
|     | ٣   | (タストサンフラー)                            | R5. 9. 1 $\sim$ R5. 10. 2 | ND                 | ND               | ND               | ND                 | ND               | ND                 | QN         | ND                | QN                  | ΩN                  | 0.091               | ON          |
|     |     |                                       | R5.10. 2 $\sim$ R5.11. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | QN         | ND                | QN                  | ΩN                  | 0.041               | ON          |
|     |     |                                       | R5.11. 1 $\sim$ R5.12. 1  | ND                 | ND               | ND               | ND                 | ND               | N                  | ΩN         | ND                | ND                  | ΩN                  | 0.38                | ND          |
|     |     |                                       | R5.12. 1 $\sim$ R6. 1. 4  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.049               | ND          |
|     |     |                                       | R5. 4. 3 $\sim$ R5. 5. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ΩN         | ND                | QN                  | ΩN                  | 0.10                | ON          |
|     |     |                                       | R5. 5. 1 $\sim$ R5. 6. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.17                | ND          |
|     |     |                                       | R5. 6. 1 $\sim$ R5. 7. 3  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ΩN         | ND                | ND                  | ΩN                  | 0.39                | ND          |
|     |     | みなみだい                                 | R5. 7. 3 $\sim$ R5. 8. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ΩN         | ND                | ND                  | ΩN                  | 0.34                | ND          |
| 34  | 大熊町 | 和 <sup>1</sup>                        | R5. 8. 1 $\sim$ R5. 9. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ΩN         | ND                | ND                  | ΩN                  | 0.25                | ND          |
|     | ٢   | (タストサンソフー)                            | R5. 9. 1 $\sim$ R5. 10. 2 | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.43                | ND          |
|     |     |                                       | R5.10. 2 $\sim$ R5.11. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.24                | ND          |
|     |     |                                       | R5.11. 1 $\sim$ R5.12. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.13                | ND          |
|     |     |                                       | R5.12. 1 $\sim$ R6. 1. 4  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.075               | ND          |
|     |     |                                       | R5. 4. 3 $\sim$ R5. 5. 1  | ND                 | ND               | ND               | ND                 | ND               | M                  | ND         | ND                | ND                  | ND                  | 0.036               | ND          |
|     |     |                                       | R5. 5. 1 $\sim$ R5. 6. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.060               | ND          |
| _   |     |                                       | R5. 6. 1 $\sim$ R5. 7. 3  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.14                | ND          |
|     |     | 4<br>4<br>7                           | R5. 7. 3 $\sim$ R5. 8. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.15                | ND          |
| 35  | 浪江町 | A A A A A A A A A A A A A A A A A A A | R5. 8. 1 $\sim$ R5. 9. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.19                | ND          |
| _   | ٢   | (タストサンソソー)                            | R5. 9. 1 $\sim$ R5. 10. 2 | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.30                | ND          |
|     |     |                                       | R5.10. 2 $\sim$ R5.11. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ΩN         | ND                | ND                  | QN                  | 0.049               | ND          |
|     |     |                                       | R5.11. 1 $\sim$ R5.12. 1  | ND                 | ND               | ND               | ND                 | ND               | ND                 | ND         | ND                | ND                  | ND                  | 0.027               | N           |
|     |     |                                       | R5.12. 1 $\sim$ R6. 1. 4  | ND                 | ND               | N                | ND                 | ND               | N                  | ND         | ND                | ND                  | ND                  | 0.024               | ND          |

| 47 | ¥<br>4                                 |                    |                      |                  |                    | 颒     | 種濃                 | 度 (mBq/m³)         | (m <sup>3</sup> ) |                     |             |                     |                     |
|----|----------------------------------------|--------------------|----------------------|------------------|--------------------|-------|--------------------|--------------------|-------------------|---------------------|-------------|---------------------|---------------------|
|    | 朱 以 朔 同                                | $^{51}\mathrm{Cr}$ | $^{54}\!\mathrm{Mn}$ | <sub>58</sub> Co | $^{59}\mathrm{Fe}$ | °0009 | $^{95}\mathrm{Zr}$ | $^{95}\mathrm{Nb}$ | <sup>106</sup> Ru | $^{125}\mathrm{Sb}$ | $^{134}$ Cs | $^{137}\mathrm{Cs}$ | $^{144}\mathrm{Ce}$ |
|    | R5. 4. 3 $\sim$ R5. 5. 1               | ND                 | QN                   | (N)              | QN                 | ND    | ND                 | ND                 | ND                | N N                 | QN          | QN                  | ND                  |
|    | R5. 5. 1 $\sim$ R5. 6. 1               | ND                 | ND                   | N                | ND                 | ND    | M                  | ND                 | ND                | © N                 | ND          | ND                  | ND                  |
| 14 | R5. 6. 1 $\sim$ R5. 7. 3               | ND                 | QN                   | N N              | QN                 | ND    | N                  | ND                 | ND                | N N                 | ND          | 0.004               | ND                  |
|    | R5. 7. 3 $\sim$ R5. 8. $1^{*2}$        | ND                 | QN                   | ΩN               | QN                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.003               | ND                  |
|    | R5. 8. 1 $\sim$ R5. 9. 1               | ND                 | QN                   | ΩN               | QN                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | QN                  | ND                  |
|    | R5. 9. 1 $\sim$ R5. 10. 2              | ND                 | ND                   | ND               | ND                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.004               | ND                  |
|    | R5.10. 2 $\sim$ R5.11. 1               | ND                 | QN                   | ND               | QN                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | ND                  | ND                  |
|    | R5.11. 1 $\sim$ R5.12. 1               | ND                 | ND                   | ND               | ND                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | ND                  | ND                  |
|    | R5.12. 1 $\sim$ R6. 1. 4               | ND                 | ND                   | ND               | ND                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.003               | ND                  |
|    | R5. 4. 3 $\sim$ R5. 5. 1               | ND                 | QN                   | ΩN               | ΩN                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | QN                  | ND                  |
|    | R5. 5. 1 $\sim$ R5. 6. 1               | ND                 | QN                   | ΩN               | ΩN                 | ND    | ND                 | ND                 | ND                | ON                  | QN          | QN                  | ND                  |
|    | 6. 1                                   | ND                 | ΩN                   | ΩN               | ΩN                 | ND    | ND                 | ND                 | ND                | N N                 | ON          | 0.004               | ND                  |
|    | R5. 7. 3 ~ R5. 8. 1                    | ND                 | ND                   | N                | ND                 | ND    | ND                 | ND                 | ND                | R                   | ND          | 0.004               | ND                  |
|    | R5. 8. 1 $\sim$ R5. 9. 1               | ND                 | ΩN                   | ŒN               | QN                 | ND    | ND                 | ND                 | ND                | ON                  | ON          | 0.003               | ND                  |
|    | R5. 9. 1 $\sim$ R5. 10. 2              | ND                 | QN                   | N N              | QN                 | ND    | N                  | ND                 | ND                | R                   | ND          | 0.007               | ND                  |
|    | R5.10. 2 $\sim$ R5.11. 1               | ND                 | QN                   | ON               | QN                 | ND    | ND                 | ND                 | ND                | N)                  | ON          | 0.003               | ND                  |
|    | R5.11. 1 $\sim$ R5.12. 1               | ND                 | ΩN                   | ΩN               | ΩN                 | ND    | ND                 | ND                 | ND                | N)                  | ON          | QN                  | ND                  |
|    | R5.12. 1 $\sim$ R6. 1. 4               | ND                 | QN                   | ND               | QN                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | ND                  | ND                  |
|    | R5. 4. 3 $\sim$ R5. 5. 1               | ND                 | QN                   | ΩN               | ΩN                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.004               | ND                  |
|    | R5. 5. 1 $\sim$ R5. 6. 1               | ND                 | ND                   | ND               | ND                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.008               | ND                  |
|    | R5. 6. 1 $\sim$ R5. 7. $3^{*1}$        | ND                 | ND                   | ND               | ND                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.009               | ND                  |
|    | R5. 7. 3 $\sim$ R5. 8. 1 <sup>*3</sup> | ND                 | ND                   | ND               | ND                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.007               | ND                  |
|    | R5. 8. 1 $\sim$ R5. 9. 1               | ND                 | QN                   | ΩN               | QN                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 600.0               | ND                  |
|    | R5. 9. 1 $\sim$ R5. 10. 2              | ND                 | ND                   | ND               | ND                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.011               | ND                  |
|    | 10. 2 $\sim$ R5.11.                    | ND                 | QN                   | ΩN               | ΩN                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.005               | ND                  |
|    | R5.11. 1 $\sim$ R5.12. 1               | ND                 | QN                   | ΩN               | QN                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.004               | ND                  |
|    | R5.12. 1 $\sim$ R6. 1. 4               | ND                 | ND                   | ND               | ND                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.055               | ND                  |
|    | R5. 4. 3 $\sim$ R5. 5. 1               | ND                 | QN                   | ON               | QN                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.009               | ND                  |
|    | R5. 5. 1 $\sim$ R5. 6. 1               | ND                 | QN                   | ΩN               | ΩN                 | ND    | ND                 | ND                 | ND                | ON                  | QN          | 0.014               | ND                  |
|    | R5. 6. 1 $\sim$ R5. 7. 3               | ND                 | ΩN                   | ŒN               | QN                 | ND    | ND                 | ND                 | ND                | ON                  | ON          | 0.010               | ND                  |
|    | R5. 7. 3 $\sim$ R5. 8. $1^{*4}$        | ND                 | ΩN                   | ŒN               | QN                 | ND    | ND                 | ND                 | ND                | ON                  | ON          | 0.013               | ND                  |
|    | R5. 8. 1 ~ R5. 9. 1                    | ND                 | ΩN                   | ŒN               | QN                 | ND    | ND                 | ND                 | ND                | ON                  | ON          | 600.0               | ND                  |
|    | R5. 9. 1 $\sim$ R5. 10. 2              | ND                 | QN                   | ND               | QN                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.014               | ND                  |
|    | R5.10. 2 $\sim$ R5.11. 1               | ND                 | QN                   | ON               | QN                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.006               | ND                  |
|    | R5.11. 1 $\sim$ R5.12. 1               | ND                 | ND                   | ND               | ND                 | ND    | ND                 | ND                 | ND                | ND                  | ND          | 0.005               | ND                  |
|    | R5. 12. 1 ~ R6. 1. 4                   | ND                 | QN                   | (N)              | QN                 | ND    | ND                 | ND                 | ND                | ON                  | ND          | 900.0               | ND                  |

|      |         |                                        | 1                               |                    |                  |                  |                  | 颒                | 種濃                 | 度 (mBq/m³) | 'm³)  |                     |             |                     |                   |
|------|---------|----------------------------------------|---------------------------------|--------------------|------------------|------------------|------------------|------------------|--------------------|------------|-------|---------------------|-------------|---------------------|-------------------|
| Š.   | 異       | 点<br>名                                 | 茶 英 選 三                         | $^{51}\mathrm{Cr}$ | <sup>54</sup> Mn | <sub>58</sub> Co | <sub>69</sub> Fe | OO <sub>09</sub> | $^{95}\mathrm{Zr}$ | $^{96}$ Np | 106Ru | $^{125}\mathrm{Sb}$ | $^{134}$ Cs | $^{137}\mathrm{Cs}$ | <sup>144</sup> Ce |
|      |         |                                        | R5. 4. 3 ~ R5. 5. 1             | ND                 | ND               | QN               | QN               | ND               | ND                 | ND         | ND    | N                   | QN          | 0.031               | N                 |
|      |         |                                        | R5. 5. 1 $\sim$ R5. 6. 1        | ND                 | ND               | ON.              | ND               | ND               | ND                 | ND         | ND    | N                   | ND          | 0.044               | N                 |
|      |         |                                        | R5. 6. 1 $\sim$ R5. 7. 3        | ND                 | ND               | QN               | QN               | QN               | N                  | ND         | ND    | R                   | QN          | 0.075               | 8                 |
|      |         | 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | R5. 7. 3 $\sim$ R5. 8. 1        | ND                 | ND               | ND<br>N          | ND               | ND               | ND                 | ND         | ND    | N                   | ND          | 0.081               | N                 |
| 40 j | 南相馬市 (僧 | (簡易型ダスト                                | R5. 8. 1 $\sim$ R5. 9. 1        | ND                 | ND               | QN               | QN               | QN               | N                  | ND         | ND    | R                   | QN          | 0.11                | 8                 |
|      | #`      | サンプラー)                                 | R5. 9. 1 $\sim$ R5. 10. 2       | ND                 | ON               | QN               | ON               | ON               | ND                 | ND         | ND    | R                   | QN          | 0.14                | R                 |
|      |         |                                        | R5. 10. $2 \sim R5. 11. 1$      | ND                 | QN               | ΩN               | QN               | QN               | ND                 | ND         | ND    | ND                  | QN          | 0.044               | N                 |
|      |         |                                        | R5.11. 1 $\sim$ R5.12. 1        | ND                 | ΩN               | ΩN               | ΩN               | QN               | ND                 | ND         | ND    | N                   | ΩN          | 0.019               | N                 |
|      |         |                                        | R5.12. 1 $\sim$ R6. 1. 4        | ND                 | ΩN               | ΩN               | ΩN               | QN               | ND                 | ND         | ND    | N                   | ΩN          | 0.009               | R                 |
|      |         |                                        | R5. 4. 3 $\sim$ R5. 5. 1        | ND                 | QN               | (N)              | QN               | QN               | ND                 | ND         | ND    | N                   | QN          | 0.033               | N                 |
|      |         |                                        | R5. 5. 1 $\sim$ R5. 6. 1        | ND                 | ON               | ON.              | QN               | N                | N                  | ND         | ND    | R                   | QN          | 0.036               | R                 |
|      |         |                                        | R5. 6. 1 $\sim$ R5. 7. 3        | ND                 | ND               | ON.              | ND               | ND               | ND                 | ND         | ND    | N                   | ND          | 0.048               | N N               |
|      |         | #<br>**<br>**<br>**<br>**<br>**<br>**  | R5. 7. 3 $\sim$ R5. 8. 1        | ND                 | ND               | QN               | QN               | QN               | N                  | ND         | ND    | R                   | QN          | 0.047               | 8                 |
| 41   | 南相馬市 (作 | (簡易型ダスト                                | R5. 8. 1 $\sim$ R5. 9. 1        | ND                 | ND               | QN               | QN               | QN               | N                  | ND         | ND    | R                   | QN          | 0.065               | 8                 |
|      | #`      | サンプラー)                                 | R5. 9. 1 $\sim$ R5. 10. 2       | ND                 | ON               | QN               | ON               | ON               | ND                 | ND         | ND    | R                   | QN          | 080 .0              | R                 |
|      |         |                                        | R5. 10. $2 \sim R5. 11. 1$      | ND                 | QN               | ΩN               | QN               | QN               | ND                 | ND         | ND    | ND                  | QN          | 0.026               | N                 |
|      |         |                                        | R5.11. 1 $\sim$ R5.12. $1^{*6}$ | ND                 | ΩN               | ΩN               | ΩN               | QN               | ND                 | ND         | ND    | N                   | ΩN          | 0.015               | N                 |
|      |         |                                        | R5.12. 1 $\sim$ R6. 1. 4        | ND                 | QN               | ΩN               | QN               | QN               | ND                 | ND         | ND    | ND                  | ΩN          | 0.008               | ND                |
|      |         |                                        | R5. 4. 3 $\sim$ R5. 5. 1        | ND                 | ΩN               | ΩN               | ΩN               | QN               | ND                 | ND         | ND    | N                   | ΩN          | 0.017               | N)                |
|      |         |                                        | R5. 5. 1 $\sim$ R5. 6. 1        | ND                 | QN               | ΩN               | QN               | QN               | ND                 | ND         | ND    | ND                  | QN          | 0.020               | ND                |
|      |         |                                        | R5. 6. 1 $\sim$ R5. 7. 3        | ND                 | QN               | ΩN               | QN               | QN               | ND                 | ND         | ND    | ND                  | QN          | 0.025               | N)                |
|      |         | にきばらた原                                 | R5. 7. 3 $\sim$ R5. 8. 1        | ND                 | QN               | ΩN               | QN               | QN               | ND                 | ND         | ND    | N                   | QN          | 0.029               | N)                |
| 42 ī | 南相馬市 (作 | (簡易型ダスト                                | R5. 8. 1 $\sim$ R5. 9. 1        | ND                 | ND               | QN               | QN               | QN               | N                  | ND         | ND    | R                   | QN          | 0.036               | 8                 |
|      | +`      | サンプラー)                                 | R5. 9. 1 $\sim$ R5. 10. 2       | ND                 | ND               | QN               | QN               | ND               | ND                 | ND         | ND    | ND                  | QN          | 0.040               | ND                |
|      |         |                                        | R5.10. 2 $\sim$ R5.11. 1        | ND                 | QN               | ΩN               | QN               | ND               | ND                 | ND         | ND    | ND                  | QN          | 0.014               | ND                |
|      |         |                                        | R5.11. 1 $\sim$ R5.12. 1        | ND                 | ND               | ND               | ND               | ND               | ND                 | ND         | ND    | ND                  | ND          | 0.007               | ND                |
|      |         |                                        | R5.12. 1 $\sim$ R6. 1. 4        | ND                 | ΩN               | ΩN               | QN               | QN               | ND                 | ND         | ND    | ND                  | QN          | ND                  | N                 |
| (浜)  | 1       | 「ND」:検出下限値未満                           | + 持端 「一」:久測                     |                    |                  |                  |                  |                  |                    |            |       |                     |             |                     |                   |

<sup>\*1</sup> 簡易型ダストサンプラーが停電のため、R5.6.12 11:22 ~ R5.6.12 11:23まで停止した。 \* 23

簡易型ダストサンプラーが停電のため、R5.7.10 12:48 ~ R5.7.10 13:05、R5.8.1 7:11 ~ R5.8.1 7:12まで停止した。

簡易型ダストサンプラーが停電のため、R5.7.13 5:53 ~ R5.7.13 5:54まで停止した。 თ \*

簡易型ダストサンプラ—が停電のため、R5.10.9 21:44 ~ R5.10.9 21:57まで停止した。 簡易型ダストサンプラーが停電のため、R5.7.10 12:56 ~ R5.7.10 12:57まで停止した。 \* 4 <del>\*</del>

簡易型ダストサンプラーが停電のため、R5.11.29 9:00 ~ R5.11.29 11:12まで停止した。 9

局舎耐震化作業に伴い連続ダストモニタを停止し、ハイボリウムエアサンプラによる代替測定を実施した。

ND Ce R Ð  $\Box$ 8 8 Ð e Ð R N) 999 ND Ð  $\supseteq$ 9 9 Ð 9 9 999 ON)  $\Box$ Ð 2 2 ₽ N Ø 0.030 0. 026 ND ND 0.11 2 ₽ Ð 2 2 2 ₽ 2 2 2 2 2 Ð 2 2 2 2 2 2 Ø S S S 2 2 2 2 2 2  $\mathbb{R}$ 2 2 2 999  $\mathbb{N}$ 2222 8 8 種 °° € 2 2  $\exists$ 2 2  $\mathbb{R}$ N 9 9 9  $\mathbb{R}$ R 2 2 2  $\mathbb{R}$  $\mathbb{R}$  $\exists$ 2222 2 2 2  $\mathbb{R}$  $\square$  $\exists$ 999 2 Ø  $\mathbb{R}$ ND 9 9 9 Ø B 999 9 9 9 <sup>36</sup>Fe 2 2 2 B  $\Theta$  $\mathbb{R}$ Ð  $\mathbb{R}$  $\Box$  $\mathbb{R}$ Ð 9 ° € 2 2 2 2 2 2 2222 2 2 2 2 2 2 2 R5. 8.8 R5. 9.13 5.10 10.13 12.6 5.11 6.6 8. 4 6.7 5-2-2(3) 大気浮遊じんの核種濃度(比較対照地点) R5. 10. R5. 11. 4. 5. 7 R5. 12. R5. 11. R5. 12. R5. 11. R5. 12. 9 ∞. 6 4. 7 9. 4; 5. 6. 7 ∞. 9. 10. 10. R5. 票 ? ? ? ? ? ? ? ? ? ? ? ₹ ₹ ? 7 ? ? ? 母 R5. 12. 6 R5. 9.12 11.8 12.5 5. 8 9. 4 5.10 4. 4 6. 1 7. 3 R5. 8. 1 R5. 10. 2 9 R5. 7. 5 R5. 8. 3 R5. 9. 6 R5.11. 6 R5. 9. 4 9.9 R5. 10. 12 R5.11. 1 R5. 6. 5 R5.10.4 R5. 8. 1 R5.11. 1 5.9 7.6 R5.12.4 8.7 R5. 12. R5. 10. 4. 4 5. 9 ۲. R5. (簡易型ダスト (簡易型ダスト (簡易型ダスト (簡易型ダスト が、おおりません。 さってまり 道・手町 しょうわまち 昭 和 町 サンプラー) 禁事 4 順 会津若松市 型 郡山市 福島市 山河市 2 Š

59

( 世

<sup>1 「</sup>ND」: 検出下限値未満 「一」: 欠測 2 上記の他、人工放射性核値は検出されなかった。 3 ろ紙の灰化処理はせず、ろ紙を直接U8容器で測定した。

5-2-3(1) 大気中水分のトリチウム濃度

|         | 探 取 期 間                    | 大気中濃度 (mB.g./m3) | <br> | 大気中水分量 (3 /m³) |
|---------|----------------------------|------------------|------------------------------------------------------------------|----------------|
| R5.     | $4. \ 3 \sim R5. \ 5. \ 1$ | 5. 4             | 0.74                                                             | 7.3            |
| R5.     | 5. 1 $\sim$ R5. 6. 1       | 8.6              | 0.90                                                             | 9.6            |
| R5.     | 6. 1 $\sim$ R5. 7. 3       | 9.2              | 0.65                                                             | 14             |
| R5.     | 7. 3 $\sim$ R5. 8. 1       | 9.6              | 0.54                                                             | 18             |
| R5.     | 8. 1 $\sim$ R5. 9. 1       | ND               | ND                                                               | 20             |
| R5.     | 9. 1 $\sim$ R5. 10. 2      | ND               | ND                                                               | 17             |
| R5. 10. | 10. $2 \sim R5.11. 1$      | ND               | ND                                                               | 9.5            |
| R5.11.  | 11. 1 $\sim$ R5. 12. 1     | 3.6              | 0. 48                                                            | 7.4            |
| R5. 12. | 12. 1 $\sim$ R6. 1. 4      | 2. 1             | 0. 42                                                            | 5.0            |
| R5.     | 4. 3 $\sim$ R5. 5. 1       | 5. 1             | 0.68                                                             | 7.5            |
| R5.     | 5. 1 $\sim$ R5. 6. 1       | 6.0              | 0.60                                                             | 10             |
| R5.     | 6. 1 $\sim$ R5. 7. 3       | 12               | 0.81                                                             | 15             |
| R5.     | 7. 3 $\sim$ R5. 8. 1       | 8.0              | 0.43                                                             | 19             |
| R5.     | 8. 1 $\sim$ R5. 9. 1       | ND               | ND                                                               | 21             |
| R5.     | 9. 1 $\sim$ R5.10. 2       | ND               | ND                                                               | 19             |
| R5. 10. | 10. $2 \sim R5.11.1$       | ND               | ND                                                               | 9.8            |
| R5.11.  | 11. 1 $\sim$ R5. 12. 1     | 3.8              | 0.55                                                             | 7.0            |
| R5. 12. | 12. 1 $\sim$ R6. 1. 4      | 2.5              | 0.55                                                             | 4.6            |
| R5.     | 4. 3 $\sim$ R5. 5. 1       | 7.0              | 0.95                                                             | 7.4            |
| R5.     | 5. 1 $\sim$ R5. 6. 1       | 11               | 1.1                                                              | 8.6            |
| R5.     | 6. 1 $\sim$ R5. 7. 3       | 12               | 0.81                                                             | 15             |
| R5.     | 7. 3 $\sim$ R5. 8. 1       | 13               | 0.69                                                             | 19             |
| R5.     | 8. 1 $\sim$ R5. 9. 1       | ND               | ND                                                               | 21             |
| R5.     | 9. 1 $\sim$ R5.10. 2       | ND               | ND                                                               | 19             |
| R5.     | 10. $2 \sim R5.11.1$       | ND               | ND                                                               | 10             |
| R5. 11. | 11. 1 $\sim$ R5. 12. 1     | 3.9              | 0.53                                                             | 7.3            |
| R5.     | 12. 1 $\sim$ R6. 1. 4      | 2.6              | 0.52                                                             | 4.9            |

|     |           |                                        | トリチウム濃度                                                                                         | 農度              | 備考               |
|-----|-----------|----------------------------------------|-------------------------------------------------------------------------------------------------|-----------------|------------------|
| No. | 超点        | 探 取 期 間                                | 大気中濃度<br>(mBq/m³)                                                                               | 捕集水濃度<br>(Bq/L) | 大気中水分量<br>(g/m³) |
|     |           | R5. 4. 3 $\sim$ R5. 5. 1               | 16                                                                                              | 2.1             | 7.7              |
|     |           | R5. 5. 1 $\sim$ R5. 6. 1               | 28                                                                                              | 2.7             | 10               |
|     |           | R5. 6. 1 $\sim$ R5. 7. 3               | 36                                                                                              | 2.4             | 15               |
|     | 大 熊 町     | R5. 7. 3 $\sim$ R5. 8. 1               | 32                                                                                              | 1.7             | 19               |
| 4   |           | R5. 8. 1 $\sim$ R5. 9. 1               | 13                                                                                              | 0.63            | 21               |
|     | おっと ままま   | R5. 9. 1 $\sim$ R5. 10. 2              | 24                                                                                              | 1.3             | 18               |
|     |           | R5.10. 2 $\sim$ R5.11. 1               | 21                                                                                              | 2.1             | 10               |
|     |           | R5.11. 1 $\sim$ R5.12. 1               | 13                                                                                              | 1.6             | 7.7              |
|     |           | R5.12. 1 $\sim$ R6. 1. 4               | 15                                                                                              | 2.9             | 5. 1             |
|     |           | R5. 4. 3 $\sim$ R5. 5. 1               | 15                                                                                              | 1.9             | 7.8              |
|     |           | R5. 5. 1 $\sim$ R5. 6. 1               | 20                                                                                              | 1.9             | 10               |
|     |           | R5. 6. 1 $\sim$ R5. 7. 3               | 20                                                                                              | 1.3             | 16               |
|     | 双葉町       | R5. 7. 3 $\sim$ R5. 8. 1               | 29                                                                                              | 1.5             | 20               |
| ಬ   |           | R5. 8. 1 $\sim$ R5. 9. 1               | 33                                                                                              | 1.4             | 23               |
|     | こねり やま 相3 | R5. 9. 1 $\sim$ R5. 10. 2              | 20                                                                                              | 1.0             | 20               |
|     |           | R5.10. 2 $\sim$ R5.11. 1               | 6. 4                                                                                            | 0.62            | 10               |
|     |           | R5.11. 1 $\sim$ R5.12. 1               | 8. 4                                                                                            | 1.0             | 8.0              |
|     |           | R5.12. 1 $\sim$ R6. 1. 4               | 2.9                                                                                             | 0.53            | 5.5              |
| Ħ   | 1 Nº 分盤母立 | 1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、 | N。 6 劉祖 1 哲 2 1 年 1 年 1 年 1 年 1 7 7 7 7 年 1 4 7 4 年 1 日 2 1 1 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1. 计            |                  |

No.の網掛け部分は東京電力ホールディングス株式会社福島第一原子力発電所から半径5km未満の地域 ( )

「ND」:検出下限値未満

2

<sup>3</sup> 検出限界値はおおむね5mBq/m³以下

大気中水分量  $(g/m^3)$ 6.4 8.8 4.6 15 18 19 18 10 捕集水濃度 (Bq/L) 0.78 0.87 0.590.64  $\mathbb{R}$  $\exists$ トリチウム濃度 大気中濃度  $(mBq/m^3)$ 5.0 7.6 8.6 12 ND ND  $\frac{N}{N}$  $\mathbb{R}$ 5-2-3(2) 大気中水分のトリチウム濃度(比較対照地点) 10. 2 12. 1 4  $^{\circ}$ 6 5. 6.  $\infty$ 噩 R5. R5. R5. R5. R5. R5. R5. R5. R6. 羅 7 ? 卧 R5. 10. 2 R5. 11. 1 9. 1 R5. 12. 1 ಣ  $^{\circ}$ 採 ∞. 4. 7 5. 6. R5. R5. R5. R5. R5. R5. 名 七 <u>\*</u>℃ 业 垣 出方 型 価 №.  $\overline{\phantom{a}}$ 

(注) 「ND」: 検出下限値未満数値は有効数字2桁にて表記

999 Q. ND Ð 9 9 9 9  $\mathbb{R}$ R 9 9  $\mathbb{R}$ ND ND ND ND 2 2 2 2  $\mathbb{R}$  $\mathbb{R}$ N 9 9  $\mathbb{R}$  $\mathbb{R}$ ND ND ND ND  $\mathbb{R}$ 8 0.24 0.52 0.50 8.8 8.8 0.38 0.50 1. 2 0. 60 0. 91 0.75 0.82 9.9 0.71 1.8 2.7 2.9 2.8 1.3 4.2 2.8 1. 1 1.4 2.3 . . 28 14 10 16 26 0.23 0.19 0.30 0.23 0.27 48 0.34 2 8 2 2 2 0. ND ND N ND 9  $\mathbb{R}$ ND N ND 9 ND ND ND 9 N ND 8 8 9 9 ND ND 9 8 ND 9 9 9 ND 999 2 98 ND ND ND 8 8  $\mathbb{R}$ N  $(MBq/km^2)$  $\mathbb{N}$  $\exists$  $\mathbb{R}$  $\mathbb{R}$  $\mathbb{N}$  $\exists$  $\exists$  $\mathbb{R}$  $\exists$  $\exists$  $\exists$  $\exists$ 2  $\mathbb{R}$  $\exists$  $\exists$  $\mathbb{R}$  $\exists$  $\exists$ 2  $\exists$ 8 N eq $\exists$  $\mathbb{N}$  $\exists$  $\exists$ R  $\supseteq$  $\exists$  $\exists$ 庚 22222 99 9 N ND ND N ND ND 9 8 8 ND 態 2222 8 8 ND ND 88 9 N 2222 99 8 ND ND ND 9 ND N 9 988  $\mathbb{R}$ N N R 99 8 S1Cr ND 222 日日  $\exists$ 2222 22222  $\mathbb{R}$  $\mathbb{R}$  $\mathbb{R}$  $\supseteq$  $\, \, \mathbb{R}$  $\mathbb{R}$  $\exists$ 2 2 2 222 2 0  $^{\circ}$ R5.10. R5.11. R5. 9. R5. 10. R5. 11. R5. 12. R5.11. 7 5 6.  $\infty$ 6 12. 5 6. 7  $\infty$ 5 9  $\infty$ 6 10. 12. 5. 6. ∞. 6 10. 12. R6. R5. R5. R5. R5. R5. R5. R5. R5. R5. R6. R5. R6. R5. R6. 7 ? 7 ? 7 7 7 ? ? ? ? 7 7 7 7 7 7 7 ? 7 ? ? ? ? 7 7 7 ? 7 ? 7 敃 2 2  $^{\circ}$ က 2 2 0 2 4 က 2 က 3 깛 R5. 11. R5. 11. 5. 6. 7.  $\infty$ 10. R5. 11. 5. 9 7. 8. 9. 10. R5. 12. 4. 5. 9 7  $\infty$ 6 R5. 10. 9 7 9. 12. 12. 5.  $\infty$ 9. 10. 12. R5. 降下物の核種濃 ひきのはま 久之浜 に路に お西 のか .. ₹ \$ な都 終大 105 いわき市 田村市 富岡町 型 Š. 2 3

| $^{51}\mathrm{Cr}$ | <sup>54</sup> Mn | <sup>58</sup> Co | <sup>59</sup> Fe | 数   | 濃 度<br>95Zr | (Bq/m²(MBq/km²)<br>95Nb 106 | q/km²) ) 106Ru | 125Sb |      | 137Cs | 144Ce |
|--------------------|------------------|------------------|------------------|-----|-------------|-----------------------------|----------------|-------|------|-------|-------|
|                    |                  | ON ON            | 2 2              | 8   | ON ON       | 2 9                         | ON ON          | ON ON | 3.5  | 160   | ON ON |
| 3                  | ND ND ND         | ND (N            |                  | N N | N QN        | 2 2                         | ND ND          | ND    | 0.81 | 88    | ND    |
|                    |                  | ND               | ND               | ND  | ND          | N)                          | ND             | ND    | 0.51 | 25    | ND    |
|                    | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | 1.8  | 92    | ND    |
|                    | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | 1.1  | 22    | ND    |
|                    | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | 0.51 | 28    | ND    |
|                    | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | 2. 4 | 130   | ND    |
|                    | ND ND            | ND               | ND               | ND  | ND          | MD                          | ND             | ND    | 0.43 | 24    | ND    |
|                    | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | 0.10 | 0.9   | ND    |
|                    | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 2.5   | ND    |
|                    | ND ND            | QN               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 96.0  | ND    |
|                    | UN UN            | QN               | ND               | ND  | ND          | ND                          | ND             | ND    | N    | 0.64  | ND    |
|                    | ND ND            | QN               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 1.6   | ND    |
| 2                  | ND ND            | QN               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 1.4   | ND    |
|                    | ND ND            | ND               | ON               | ND  | ND          | ND                          | ND             | ND    | ND   | 1.0   | ND    |
|                    |                  | QN               | ND               | ND  | ND          | ND                          | ND             | ND    | N)   | 1.8   | ND    |
|                    |                  | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 0.93  | ND    |
|                    | ND ND            | QN               | ON               | ND  | ND          | ND                          | ND             | ND    | ND   | 9.6   | ND    |
|                    | ND ND            | ND               | ND               | ND  | ND          | N                           | ND             | ND    | N    | 6.4   | ND    |
|                    | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 5.0   | ND    |
|                    | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 3.2   | ND    |
|                    | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 7.3   | ND    |
|                    |                  | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 4.4   | ND    |
| 2                  |                  | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 1.4   | ND    |
| 4                  | ND ND            | ND               | ND               | ND  | ND          | N                           | ND             | ND    | N    | 5.2   | ND    |
| 5                  | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 3.2   | ND    |
| 2                  |                  | QN               | ND               | ND  | ND          | ND                          | ND             | ND    | 0.96 | 48    | ND    |
| 2                  | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 16    | ND    |
| 4                  |                  | QN               | ND               | ND  | ND          | ND                          | ND             | ND    | N    | 15    | ND    |
| 2                  |                  | QN               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 17    | ND    |
| 4                  | ND ND            | QN               | ND               | ND  | ND          | ND                          | ND             | ND    | 0.71 | 26    | ND    |
| 3                  | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 16    | ND    |
| 2                  | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 9.6   | ND    |
| 4                  | ND ND            | ND               | ND               | ND  | ND          | ND                          | ND             | ND    | ND   | 12    | ND    |
| 2                  | ND ND            | ND               | ND               | ND  | ND          | MD                          | ND             | ND    | ND   | 9.6   | ND    |

| 核 種 濃 度 (Bn/m² (MPa/km²) ) | 30 952r            | N ON ON ON ON ON         | ND N | ND N | ND A.4 ND | UN GN UN ON | ND 15.5 ND | ND N | ND 15.2 ND | ND S.1 ND | ON 9.7 ON | ND N | ND N | ND N | ND 15.4 ND | ND N | ND | ND | an an an an an an an an an |
|----------------------------|--------------------|--------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|----------------------------|
|                            | $^{51}\mathrm{Cr}$ | ON.                      | N N                                      | N)                                       | N)                                      | N N                                                                        | N)                                          | ON.                                      | N N                                      | N)                                            | ON                                   | ND                                       | N)                                       | ND                                       | N)                                          | N N                                      | N)                                     | ND                                     | (N                         |
|                            | 探 財 聞 ―            | R5. 4. 4 $\sim$ R5. 5. 2 | R5. 5. 2 $\sim$ R5. 6. 2                 | R5. 6. 2 $\sim$ R5. 7. 4                 | R5. 7. 4 $\sim$ R5. 8. 2                | R5. 8. 2 $\sim$ R5. 9. 4                                                   | R5. 9. 4 $\sim$ R5.10. 3                    | R5.10. 3 $\sim$ R5.11. 2                 | R5.11. 2 $\sim$ R5.12. 4                 | R5.12. 4 $\sim$ R6. 1. 5                      | R5. 4. 4 $\sim$ R5. 5. 2             | R5. 5. 2 $\sim$ R5. 6. 2                 | R5. 6. 2 $\sim$ R5. 7. 4                 | R5. 7. 4 ~ R5. 8. 2                      | R5. 8. 2 $\sim$ R5. 9. 4                    | R5. 9. 4 $\sim$ R5.10. 3                 | R5.10. 3 $\sim$ R5.11. 2               | R5.11. 2 $\sim$ R5.12. 4               | R5.12. 4 $\sim$ R6. 1. 5   |
|                            | No. 茜 点 名          |                          |                                          |                                          |                                         | 9 萬尾村 柏原                                                                   |                                             |                                          |                                          |                                               |                                      |                                          |                                          |                                          | 10 川俣町 山木屋                                  |                                          |                                        |                                        |                            |

注) 1 No. O 納掛げ部分 (4 東京電力 ホールティング) 2 ND]: 検出下限値未満

|   |                                                |                            |                    |          |                  |                  | 释  | 推  | 庫 (Ba/m <sup>2</sup> (MBa/bm <sup>2</sup> )、 | a/lem2) ) |                   |       |        |       |
|---|------------------------------------------------|----------------------------|--------------------|----------|------------------|------------------|----|----|----------------------------------------------|-----------|-------------------|-------|--------|-------|
| 框 | 各                                              | 探 取 期 間                    | $^{51}\mathrm{Cr}$ | 54Mn     | <sub>88</sub> Co | <sup>59</sup> Fe |    | 6  |                                              | 106Ru     | <sup>125</sup> Sb | 134Cs | 137°Cs | 144Ce |
|   |                                                | R5. 4. 3 ~ R5. 5. 1        | ND                 | ON.      | ND               | N                | ND | ND | ON.                                          | ND        | QN                | 0.20  | 7.0    | ON    |
|   |                                                | R5. 5. 1 $\sim$ R5. 6. 1   | ND                 | Ø.       | N)               | (N               | N) | QN | ON                                           | ND        | ON.               | 0.056 | 4.4    | ON.   |
|   |                                                | R5. 6. 1 ~ R5. 7. 3        | ND                 | ON.      | ND               | M                | ND | ND | (N)                                          | ND        | ON                | ON    | 1.9    | ON    |
|   |                                                | R5. 7. 3 ~ R5. 8. 1        | ND                 | Ø.       | N)               | (N               | N) | ND | ON                                           | ND        | ON.               | ON.   | 0.75   | ON.   |
|   | まっき 大米田 大田 | R5. 8. 1 ~ R5. 9. 1        | ND                 | ON.      | N)               | N                | N) | QN | ON                                           | ND        | ON.               | 0.088 | 3.8    | ON.   |
|   |                                                | R5. 9. 1 ~ R5. 10. 2       | ND                 | ON.      | N)               | N                | N) | QN | ON                                           | ND        | ON.               | ON.   | 0.78   | ON.   |
|   |                                                | R5. 10. 2 $\sim$ R5. 11. 1 | ND                 | Ø.       | ND               | ND               | N  | QN | (N                                           | ND        | ON.               | ON    | 0.72   | ON    |
|   |                                                | R5. 11. 1 $\sim$ R5. 12. 1 | ND                 | Ø.       | N)               | (N               | N) | QN | ON                                           | ND        | ON.               | 0.067 | 4.7    | ON.   |
|   |                                                | R5. 12. 1 $\sim$ R6. 1. 4  | ND                 | ND       | ND               | ND               | ND | ND | ND                                           | ND        | ON                | 0.094 | 3.8    | ND    |
|   |                                                | R5. 4. 3 ~ R5. 5. 1        | ND                 | ON.      | (N)              | ND               | ND | QN | (N)                                          | ND        | ON                | ON    | 0.39   | ON    |
|   |                                                | R5. 5. 1 $\sim$ R5. 6. 1   | ND                 | ND<br>ND | ŒΝ               | ND               | ND | QN | ON                                           | ND        | ΩN                | (IN)  | 0.25   | ON    |
|   |                                                | R5. 6. 1 $\sim$ R5. 7. 3   | ND                 | ND<br>ND | ŒΝ               | ND               | ND | QN | ON                                           | ND        | ΩN                | (IN)  | 0.19   | ON    |
|   |                                                | R5. 7. 3 ~ R5. 8. 1        | ND                 | Ø        | ŒN               | ND               | ND | QN | (N)                                          | ND        | ΩN                | ΩN    | 0.099  | ON    |
|   | **<br>***<br>***                               | R5. 8. 1 ~ R5. 9. 1        | ND                 | ND<br>ND | ŒΝ               | ND               | ND | QN | ON                                           | ND        | ΩN                | ΩN    | 0.11   | ON    |
|   |                                                | R5. 9. 1 $\sim$ R5. 10. 2  | ND                 | ND       | ΩN               | ND               | ND | ND | ND                                           | ND        | ΩN                | ΩN    | 0.10   | ND    |
|   |                                                | R5.10. 2 $\sim$ R5.11. 1   | ND                 | ND       | (IN              | ND               | ND | QN | ND                                           | ND        | ΩN                | ΩN    | 0.16   | ON    |
|   |                                                | R5.11. 1 $\sim$ R5.12. 1   | ND                 | ND       | (IN              | ND               | ND | ND | ND                                           | ND        | ΩN                | ΩN    | 0.15   | ND    |
|   |                                                | R5 12 1 ~ R6 1 4           | ND                 | (N       | UN               | W)               | MN | NN | W                                            | UN        | UN                | UIN   | 06.0   | UN    |

(注) 1 「ND」: 検出下限値未満 2 上記の他、人工放射性核種は検出されなかった。

| 採取地点番号<br>B.7%配出点名                     |          | 探取 単位      | 金ペップ位数対能 | 744                |      |                   |                 |                  |     |                  |       |                   | 颒       | 攤      | 蜒     | 函   |       |         |        |                 |                   |            |                   |            | 大数額    |
|----------------------------------------|----------|------------|----------|--------------------|------|-------------------|-----------------|------------------|-----|------------------|-------|-------------------|---------|--------|-------|-----|-------|---------|--------|-----------------|-------------------|------------|-------------------|------------|--------|
| /TK4X JEA.                             |          | H R+       | 濃月       | ® <sup>51</sup> Cr | 54Mn | n <sup>®</sup> Co | <sup>∞</sup> Fe | °O <sub>co</sub> | 2Zr | qN <sub>96</sub> | 106Ru | <sup>126</sup> Sb | 134Cs   | 13.7Cs | 144Ce | 3.H | isi I | Sr 90Sr | r 234U | $\Lambda_{982}$ | $\rm n_{\rm scz}$ | $^{238}Pu$ | 239+210 <b>Pu</b> | 241 Am 244 | 244Cm  |
| ************************************** |          | R5. 5.12   | \        | (N)                | ND   | ON                | ON              | ON               | ΠN  | ON.              | ΩN    | ND                | ON      | 75     | QN.   | ,   | \     | 0.26    | 9.7 9  | 0, 35           | 8.3               | ŒN         | 0, 03             | 0.02 N     | ND 650 |
| 久之浜                                    | <u> </u> | R5. 11. 8  | \        | ON VD              | (N   | R                 | R               | (N               | QN. | R                | QV    | QN                | ON.     | 32     | QV.   |     | \     | ,       | \      | \               | \                 | \          | \                 | `          | / 650  |
| 44                                     |          | R5. 5.18   |          | ON ND              | ON   | ON                | ON              | ON               | (N  | QN.              | QN.   | ND                | 29      | 1300   | QN.   |     |       | 0.54    | 4 11   | 0.61            | 12                | ON         | ON                | ND N       | ND 730 |
| 押巾                                     | <u> </u> | R5. 11. 9  | \        | ON ND              | ON.  | QV                | Q.              | (N               | (N  | Q.               | QV.   | ND                | 11      | 290    | QN    |     |       | \       | \      | \               | \                 | \          | \                 | `          | 740    |
| 68204                                  |          | R5. 5.12   | \        | ON ND              | ON.  | R                 | ©.              | (N               | QV  | Q.               | ON.   | ND                | 16      | 760    | QV.   | `   | \     | 1.1     | 16     | 0.73            | 15                | ON         | 0.07              | 0.02 N     | ND 610 |
| 北州                                     | <u> </u> | R5. 11. 8  | \        | ON ,               | ON.  | R                 | ©.              | ©.               | QV  | Q.               | ON.   | ND                | 30      | 1500   | Q.    | `   | \     | \       | \      | \               | \                 | \          | \                 | `          | 720    |
| 2865                                   |          | R5. 5.12   | \        | QN ,               | Ø    | Ø                 | ©.              | Ø                | QN. | ©.               | ON.   | ND                | 30      | 1300   | QN.   |     | \     | ON N    | 18     | 96'0            | 20                | ND         | QN                | N ON       | ND 520 |
| (英)                                    |          | R5. 11. 8  | \        | QN ,               | ON.  | R                 | R               | Ø                | Q.  | R                | QN    | ND                | 20      | 1100   | QV.   | `   | \     | \       | \      | \               | \                 | \          | \                 | `          | 280    |
|                                        |          | R5. 5. 1   | \        | ON VD              | (N   | R                 | R               | (N               | QN. | R                | QV    | QN                | 2.5     | 96     | QV.   |     | \     | ON N    | 3.9    | 0.19            | 3.6               | ON         | ON                | N ON       | ND 240 |
| 国商町 小鉄                                 | 1        | R5. 11. 1  | \        | (N)                | ON   | (N)               | ON              | QN               | (N) | ON.              | QN    | ND                | 2.8     | 140    | QN.   |     | \     | \       | \      | \               | \                 | /          | \                 | `          | 280    |
|                                        |          | R5. 5.18   | \        | ON ND              | ON.  | R                 | ©.              | (N               | Q.  | Q.               | ON.   | ND                | 5.3     | 250    | QV.   | `   | \     | ON N    | 25     | 1.2             | 25                | ON         | ON.               | N ON       | ND 820 |
|                                        | <u> </u> | R5. 11. 9  | \        | ON ND              | ON.  | ©.                | ©.              | (N               | (N  | Q.               | QV.   | QN                | 3. 3    | 180    | QV.   |     | \     | \       | \      | \               | \                 | \          | \                 | `          | 098    |
|                                        |          | R5. 5.31   | \        | ON ND              | ON.  | ©.                | ©.              | (N               | (N  | Q.               | QV.   | QN                | 6300 29 | 290000 | QV.   |     | \     | 16      | 16     | 0.79            | 15                | ON         | 0.05              | 0.02 N     | ND 380 |
| 大熊町 小入野                                |          | R5, 11, 21 | \        | ON ,               | WD   | (N)               | ON              | (N)              | ON  | ON.              | QN    | ND                | 6000 32 | 320000 | QN.   | `   | \     | \       | \      | \               | \                 | /          | \                 | `          | 390    |
|                                        |          | R5. 5.31   | 1        | ON ,               | WD   | (N)               | ON              | 1.6              | ON  | ON.              | QN    | ND                | 800     | 37000  | QN.   | `   | \     | 40      | 13     | 0.78            | 17                | 0,05       | 0.28              | 0, 15 0.   | 02 310 |
| 双業町 帮正                                 | <u> </u> | R5. 11. 21 | 7885     | ON ND              | ON.  | QV                | Q.              | (N               | (N  | Q.               | QV.   | ND                | 510 2   | 27000  | QN    |     |       | \       | \      | \               | \                 | \          | \                 | `          | 340    |
|                                        |          | R5. 5.25   |          | ON ND              | ON.  | QV                | Q.              | (N               | (N  | Q.               | QV.   | ND                | 2. 4    | 170    | QN    |     |       | 1.4     | 20     | 1.1             | 20                | ON         | 0.18              | 0.07 N     | ND 590 |
| 浪江町 北幾世橋                               | <u> </u> | R5, 11, 22 | \        | ON ND              | ON.  | ©.                | ©.              | (N               | (N  | Q.               | QV.   | QN                | 2.9     | 130    | QV.   |     | \     | \       | \      | \               | \                 | \          | \                 | `          | 710    |
|                                        | 11       | R5, 5, 18  | \        | ON ,               | ON   | ON                | ON              | (N               | ON  | ON.              | ON    | ND                | 3. 1    | 180    | ON    | `   | \     | 0, 36   | 3 12   | 0.83            | 17                | ON         | 0.01              | N ON       | ND 650 |
| 葛尾村 柏原                                 |          | R5. 11. 9  | \        | ON ,               | WD   | (N)               | ON              | (N)              | ON  | ON.              | QN    | ND                | 2.3     | 120    | QN.   | `   | \     | \       | \      | \               | \                 | /          | \                 | `          | / 630  |
| 2002                                   |          | R5. 5.25   | \        | ND                 | ON   | QV.               | Q.              | (N               | (N  | (N               | QV.   | QN                | 14      | 7.00   | QV.   |     | \     | 1.3     | 15     | 9.0             | 13                | (N)        | 0.14              | N ON       | ND 440 |
| 南租馬币 浦尻                                | 1        | R5. 11. 22 | \        | (N)                | ON   | (N)               | ON              | QN               | (N) | ON.              | QN    | ND                | 6.7     | 350    | QN.   |     | \     | \       | \      | \               | \                 | /          | \                 | `          | 400    |
| 11 11                                  |          | R5. 5.25   |          | ON ND              | ON.  | QV                | Q.              | (N               | (N  | Q.               | QV.   | ND                | 21      | 970    | QN    |     |       | 0.71    | 1 5.9  | 0.31            | 6.4               | ON         | QN                | 0.09 N     | ND 340 |
| 国租場中 海海                                | -        | R5. 11. 22 | \        | ND ND              | ND   | ND                | ND              | ND               | ON  | ND               | ND    | ND                | 11      | 650    | ND    | ,   | /     | /       | /      | /               | \                 | /          | /                 | ,          | 410    |
|                                        | 1        | R5. 5.17   | \        | (N)                | ND   | ON                | ON              | ON               | ΠN  | ON.              | ΩN    | ND                | 8.4     | 400    | QN.   | ,   | \     | 0.80    | 0 11   | 0, 50           | 10                | ŒN         | QN                | ND ON      | ND 800 |
| 飯舘村 蕨平                                 |          | R5. 11. 2  | \        | ON ,               | WD   | (N)               | ON              | (N)              | ON  | ON.              | QN    | ND                | 28      | 1400   | QN.   | `   | \     | \       | \      | \               | \                 | /          | \                 | `          | 820    |
| 42 82                                  | 1        | R5. 5.17   |          | (ND                | ND   | QN                | ON              | R                | QN  | QN               | ND    | ND                | 4.8     | 230    | ND    |     | \     | 0.47    | 7 9.4  | 0.34            | 8.9               | ŒΝ         | 0, 02             | 0.02       | 069 ŒN |
| 数額村 長記                                 |          | R5. 11. 2  | \        | (N)                | MD   | ON                | ON              | (N               | QN  | QN.              | ΩN    | ND                | 8. 2    | 450    | UN    | `   | \     | \       | \      | \               | \                 | \          | \                 | `          | 740    |
| 448.5                                  |          | R5. 5.17   |          | (N)                | MD   | ON                | ON              | (N               | QN  | QN.              | ΩN    | ND                | 230 1   | 10000  | UN    |     | \     | 2.4     | 1.0    | 0, 26           | 6.9               | (IN        | 0.36              | ND N       | ND 530 |
| 川俣町 山木屋                                | L        |            |          |                    |      |                   |                 |                  |     |                  |       |                   |         |        |       |     |       |         |        |                 |                   |            |                   |            |        |

注) 1 No.の網掛け部分は東京電力ホールディングス株式会社福島第一原子力発電所から半径5km未満の地域

|                                                                                |           |             |          | (中) |         |       |       |     |           |                                       |        | 颒     | 無        | 熊            | 函      |      |        |      |        |          |            |        |       | 天故然雜  |
|--------------------------------------------------------------------------------|-----------|-------------|----------|-----------------------------------------|---------|-------|-------|-----|-----------|---------------------------------------|--------|-------|----------|--------------|--------|------|--------|------|--------|----------|------------|--------|-------|-------|
| で 大は おかん おかん おかん おかん おかん おかん おかん おかん おかん かんしゃ かんしゃ かんしゃ かんしゃ かんしゃ かんしゃ かんしゃ かん | 五 及び採取地点名 | 年月日         | ##\Z     | 成为<br>議<br>度                            | 51Cr 54 | 64Mn  | So Se | 8   | 25.<br>Zr | S S S S S S S S S S S S S S S S S S S | 106 Ru | 126Sh | 134 Cs   | 137 Cs       | 144 Ce | ,F   | 1311 8 | Š    | 90Sr   | 28.Pu    | 239+240 Pu | 241 Am | 244Cm | \$ ¥  |
|                                                                                |           | R5. 4. 5    |          | \                                       |         |       |       |     |           | e e                                   | ND (N) | 2     | 8        | e            | 8      | - Q  |        |      |        |          |            |        |       | 0.031 |
|                                                                                | 1 いわき市    | R5. 7. 4    | 1        | \                                       |         | N ON  | ON ON |     | QN        | ON.                                   | ND     | Ø     | ON.      | Ð            | ND     | ND   | \      | 0.   | 0.0006 | ON ON    | ND         | \      | \     | 0.040 |
|                                                                                |           | R5.10.3     | <u> </u> | \                                       | N ON    | N DR  | ND (N | ON. | N N       | ON.                                   | QN.    | Ø     | ND<br>ND | Ð            | QN.    | ND   | \      | \    | `      | \        | \          | \      | \     | 0.051 |
|                                                                                |           | R5. 4. 7    | J        | \                                       | N ON    | N ON  | ND ND | N   | ON        | ON.                                   | ND     | R     | ON       | ON.          | ON     | ON.  | \      | \    | `      | \        | \          | \      | \     | 0.031 |
|                                                                                | 2 田村市     | R5. 7. 4    |          | \                                       | N ON    | N ON  | ND ND | N   | ND        | Q.                                    | ND     | R     | ON.      | Ð            | ON     | ND   | \      | \    | Q.     | ND<br>QX | ND         | \      | \     | 0.036 |
|                                                                                |           | R5.10.3     | <u> </u> | \                                       | N ON    | N ON  | ND ND | ND  | QN        | R                                     | ON     | ON.   | ON.      | Ø            | ON     | ND   | \      | \    | `      | \        | \          | \      | \     | 0.038 |
|                                                                                |           | R5. 4. 5    | <u> </u> | \                                       | N ON    | N ON  | ND ND | ON  | QN        | ON.                                   | ON     | R     | ON.      | ON.          | ON     | QN   | \      | \    | `      | \        | \          | \      | \     | R     |
|                                                                                | 3 広野町     | R5. 7. 5    | 1        | \                                       | N ON    | N D   | ND ND | - N | N         | ©.                                    | N)     | 2     | QN       | 0.002        | QN     | ND   | \      | / 0. | 0.0007 | ND<br>ND | N          | \      | \     | 0.032 |
|                                                                                |           | R5.10.4     | <u> </u> | \                                       | N ON    | ON ON | Q Q   | ND  | QN        | R                                     | ON     | ON.   | ON.      | Ø            | ON     | 0.59 | \      | \    | `      | \        | \          | \      | \     | 0.032 |
|                                                                                |           | R5. 4. 5    | <u> </u> | \                                       |         | N ON  | ND ND | ND  | ND        | ON.                                   | ND     | R     | ON       | QV           | ND     | ND   | \      | \    | `      | \        | \          | \      | \     | R     |
|                                                                                | 4 楢葉町     | R5. 7. 5    |          | \                                       | N ON    | N ON  | ON ON | ND  | QN        | ON.                                   | ND     | ON.   | ON.      | Q.           | ND     | ND   | \      | / 0. | 0.0007 | ND<br>ON | ND         | \      | \     | 0.029 |
|                                                                                |           | R5.10.4     | <u> </u> | \                                       | N ON    | N ON  | ON ON | ON  | QN        | R                                     | ON     | R     | ON.      | Q.           | ON     | QN   | \      | \    | `      | \        | \          | \      | \     | 0.031 |
|                                                                                |           | R5. 4. 7    | <u> </u> | \                                       | N ON    | N ON  | ON ON | N   | QN        | ON.                                   | ND     | Ø     | ON       | <sub>N</sub> | ON     | ND   | \      | \    | `      | \        | \          | \      | \     | Q     |
|                                                                                | 5 個國町     | R5. 7. 6    |          | \                                       | N ON    | N ON  | N N   | ND  | QN        | R                                     | ND     | ©.    | ON.      | 0.002        | ND     | ND   | \      | / 0. | 0.0007 | ON ON    | ND         | \      | \     | Ø     |
|                                                                                |           | R5.10. 4    |          | \                                       | ND UN   | N ON  | ND ND | ND  | ND        | ND                                    | ND     | ON.   | ND       | (N)          | ND     | ND   | /      | /    | ,      | /        | /          | /      | /     | (N    |
|                                                                                |           | R5. 4. 7    | ļ        | \                                       | ND UN   | N ON  | ON ON | ND  | ND        | ND                                    | ON     | ON.   | ND       | ON.          | ON     | ND   | \      | \    | `      | \        | \          | \      | \     | Ø     |
|                                                                                | 6 JIIPAM  | R5. 7. 3    |          | \                                       | ND UN   | N ON  | ND ND | ND  | ND        | ND                                    | ND     | N     | ND       | ON.          | ND     | ND   | \      | \    | ND I   | ND       | ND         | \      | /     | N     |
|                                                                                |           | R5.10. 2    |          | \                                       | ND UN   | N W   | ND ND | ND  | ND        | ND                                    | ND     | ND    | ND       | Œ            | ND     | ND   | /      |      | ,      | /        | /          | /      | /     | N     |
|                                                                                |           | R5. 4. 6    | Bq/L     | /                                       | ND UN   | N N   | ND ND | ND  | ND        | ND                                    | ND     | W     | ND       | ON.          | ND     | ND   | /      | _    | ,      | /        | /          | /      | /     | N     |
| 乾ロ水                                                                            | 水 7 大熊町   | R5. 7. 6    | Purt     | /                                       | ND UN   | N ON  | ND ND | ND  | ND        | ND                                    | ND     | ND    | ND       | Œ            | ND     | 0.48 | /      | / 0. | 0.0007 | ND       | ND         | /      | /     | N     |
|                                                                                |           | R5.10. 4 ml | Bq/L     | \                                       | ND NN   | N ON  | ND ND | ND  | ND        | ND                                    | ND     | ON.   | ND       | ON.          | ND     | 0.38 | \      | \    | `      | \        | \          | \      | \     | 0.044 |
|                                                                                |           | R5. 4. 6    |          | \                                       | N ON    | N ON  | ND ND | ND  | ND        | ON.                                   | ND     | R     | ND       | ON.          | ND     | 0.40 | \      | _    | `      | \        | \          | \      | \     | 0.028 |
|                                                                                | 8 双葉町     | R5. 7. 6    |          | \                                       | ND N    | N N   | ND ND | ND  | ND        | ND                                    | ND     | N     | ND       | 0.002        | ND     | ND   | \      | . 0  | 0.0007 | ND       | ND         | \      | \     | 0.023 |
|                                                                                |           | R5.10.5     |          | /                                       | ND N    | N N   | ND ND | ND  | ND        | ND                                    | ND     | ON.   | ND       | 0, 003       | ND     | ND   | \      | _    | `      |          | /          | /      | /     | 0.035 |
|                                                                                |           | R5. 4. 6    |          | \                                       | N ON    | N ON  | ND ND | N   | ND        | Q.                                    | ND     | Ø     | ND<br>ND | ON.          | ND     | ND   | \      | \    | `      | \        | \          | \      | \     | 0.085 |
|                                                                                | 9 液江町     | R5. 7. 7    |          | \                                       | ND N    | N N   | ND ND | ND  | ND        | ND                                    | ND     | N)    | ND       | ON.          | ND     | 0.43 | \      | . 0. | 0.0007 | ND       | ND         | \      | \     | 0.061 |
|                                                                                |           | R5.10. 5    |          | \                                       | ND N    | N N   | ND ND | ND  | ND        | ND                                    | ND     | N     | ND       | ON.          | ND     | ND   | \      | \    | ,      | /        | /          | \      | \     | 0.078 |
|                                                                                |           | R5. 4. 4    |          | /                                       | ND UN   | N ON  | ND ND | ND  | ND        | ND                                    | ND     | ND    | ND       | Œ            | ND     | ND   | /      |      | ,      | /        | /          | /      | /     | 0.045 |
|                                                                                | 10 萬尾村    | R5. 7. 5    |          | \                                       | ND N    | ND ND | D ND  | ND  | ND        | ND                                    | ND     | ND    | ND       | ON           | ND     | ND   | \      | \    | ND 1   | ND       | ND         | \      | _     | N     |
|                                                                                |           | R5.10.11    |          | \                                       | ND N    | N N   | ND ND | ND  | ND        | ND                                    | ND     | ND    | ND       | ND           | ND     | ND   | \      | \    | ,      | /        | /          | \      | \     | 0.031 |
|                                                                                |           | R5. 4. 6    |          | \                                       | ND N    | N N   | ND ND | ND  | ND        | ND                                    | ND     | ND    | ND       | ON.          | ND     | ND   | \      | \    | ,      | /        | /          | \      | /     | 0.089 |
|                                                                                | 11 南相馬市   | R5. 7. 7    |          | \                                       | ND N    | N N   | ND ND | ND  | ND        | ND                                    | ND     | N     | ND       | ON.          | ND     | ND   | \      | \    | ND 1   | ND       | ND         | \      | /     | 0.069 |
|                                                                                |           | R5.10.5     |          | \                                       | ND N    | ND N  | ND ND | ND  | ND        | ND                                    | ND     | ND    | ND       | ND           | ND     | ND   | \      | \    | ,      | /        | /          | \      | \     | 0.071 |
|                                                                                |           | R5. 4. 4    |          | \                                       | N ON    | N ON  | ND ND | N   | ND        | Q.                                    | ND     | Ø     | ND<br>ND | 0.017        | ND     | ND   | \      | \    | `      | \        | \          | \      | \     | R     |
|                                                                                | 12 飯館村    | R5. 7. 7    |          | \                                       | N ON    | N ON  | ND ND | N   | ND        | ON.                                   | ND     | Ø     | ND       | 0.030        | ND     | 0.46 | \      | 0.   | 0.0009 | ND       | ND         | \      | \     | Ø     |
|                                                                                |           | R5.10.3     |          | \                                       | ND N    | ND N  | ND ND | ND  | ND        | ND                                    | ND     | ND    | ND       | 0.034        | ND     | 0.44 | \      | \    | ,      | /        | /          | \      | \     | N     |
|                                                                                |           | R5. 4. 4    |          | \                                       | ND N    | N N   | ND ND | ND  | ND        | ND                                    | ND     | N     | ND       | ON.          | ND     | ND   | \      | \    | ,      | /        | /          | \      | /     | 0.031 |
|                                                                                | 13 川俣町    | R5. 7. 7    |          | \                                       | ND UN   | ND N  | ND ND | ND  | ND        | ND                                    | ND     | ON.   | ND       | ON.          | ND     | ND   | /      | /    | ND 1   | ND       | ND         | /      | /     | 0.037 |
|                                                                                |           | R5.10.11    | <u> </u> | \                                       | ND ON   | N ON  | ND ND | ND  | ND        | N                                     | ND     | N N   | ND       | ON.          | ND     | ND   | \      | \    | `      | \        | \          | \      | \     | 0.030 |

| <b>大</b>        | <b>Y</b>            | \         | \          | \        | \          | \             | \        | \          | \        | \        | \             | \          | \          | \        | \             | \        | \          | \        | \        |
|-----------------|---------------------|-----------|------------|----------|------------|---------------|----------|------------|----------|----------|---------------|------------|------------|----------|---------------|----------|------------|----------|----------|
|                 | 244Cm               | \         | \          | \        | \          | \             | /        | \          | \        | /        | \             | \          | \          | \        | \             | \        | \          | \        | \        |
|                 | 241 Am              | \         | \          | \        | \          | \             | \        | \          | \        | \        | \             | \          | \          | \        | \             | \        | \          | \        | \        |
|                 | 239+240 Pu          | QN.       | 0.008      | 0.015    | Q.         | 0.008         | QN       | 0.010      | QN       | ND       | QN            | 0.018      | QN         | QN.      | QN            | QN       | 0.018      | QN.      | 0.007    |
|                 | ™ <sub>238</sub> Pu | Ð         | Ð          | Ð        | Q.         | Q.            | ON       | QN         | Ð        | ND       | Q.            | Q.         | Ð          | Q.       | Ð             | Q.       | QN         | Q.       | Ð        |
|                 | °Sr                 | 0.0009    | 0.0013     | 0.0009   | 0.0015     | Q.            | 0.0008   | 0.0007     | 0.0014   | 0.0008   | 0.0009        | 0.0009     | 0.0012     | 0.0011   | 0.0011        | Ø        | 0.0005     | 0.0009   | 0.0008   |
|                 | *Sr                 | \         | \          | \        | \          | \             | \        | \          | \        | \        | \             | \          | \          | \        | \             | \        | \          | \        | \        |
|                 | $\mathbf{I}_{1E1}$  | \         | \          | \        | \          | \             | /        | \          | \        | /        | \             | \          | \          | \        | \             | \        | \          | \        | \        |
| 22.4            | Н <sub>е</sub>      | Ø 1       | ND<br>0.05 | Ø 1      | <b>⊗</b> I | R 8           | 0.34     | 0.33       | 0.49     | 0.11     | ₽ 1           | ND<br>0.05 | <b>⊗</b> I | Ø 1      | R R           | 0.11     | 0.30       | 0.30     | 0.06     |
| 函               | 144 Ce              | Ø         | Ø          | ON.      | Ð          | Q.            | (N       | Q.         | Ð        | ON.      | Ð             | Q.         | Ø          | Q.       | Ð             | - E      | ©.         | - R      | Ø        |
| 艦               | 137Cs               | 0.006     | 0.014      | 0.010    | 0, 031     | 0, 014        | 0, 011   | 0.028      | 0.022    | 0.011    | 0.008         | 0.011      | 0.11       | 0,004    | 0, 012        | 0, 004   | 0,056      | 0.024    | 0,011    |
| 種               | 134 Cs              | QV        | © N        | QV       | QN<br>QN   | QN            | ND       | QN<br>QN   | QV       | ND       | QN            | QN         | © N        | QN<br>QN | QV            | QN       | ND         | QN<br>Q  | © N      |
| 蒸               | <sup>125</sup> Sb   | \         | \          | \        | \          | \             | /        | \          | \        | /        | \             | \          | \          | \        | \             | \        | \          | \        | \        |
|                 | 106 Ru              | QV        | © N        | QV       | QN<br>QN   | QN            | ND       | QN<br>QN   | QV       | ND       | QN            | QN         | © N        | QN<br>QN | QV            | QN       | ND         | QN<br>Q  | © N      |
|                 | 95Nb                | Ð         | © N        | Ð        | Q.         | QN            | ND       | Q.         | Q.       | ND       | Q.            | QN         | © N        | Q.       | Q.            | QN       | ON ND      | QN<br>Q  | Q.       |
|                 | 2zr                 | QV        | © N        | QV       | QN<br>QN   | QN            | ND       | QN<br>QN   | QV       | ND       | QN            | QN         | © N        | QN<br>QN | QV            | QN       | ND         | QN<br>Q  | QV       |
|                 | °0,0°               | QV        | © N        | QV       | QN<br>QN   | QN            | ND       | QN<br>QN   | QV       | ND       | QN            | QN         | © N        | QN<br>QN | QV            | QN       | ND         | QN<br>Q  | QV       |
|                 | <sup>∞</sup> Fe     | Ø         | Ø          | Ø        | Q          | Q.            | ON.      | Ø.         | R        | ON.      | R             | Q.         | Ø          | Ø.       | R             | Ø        | ©.         | Q.       | Ø        |
|                 | °2 <sub>89</sub>    | ND<br>ON  | ND<br>ON   | ND<br>ON | ND<br>ON   | ND<br>ON      | ON       | ND<br>ON   | ND<br>ND | ND       | N)            | ND<br>ON   | ND<br>ON   | ND<br>ON | ND<br>ND      | ON.      | ND         | ND<br>ON | ND<br>ND |
|                 | 5⁴Mn                | R         | R          | R        | R          | R             | ®        | R          | R        | ON.      | R             | R          | R          | R        | R             | R        | R          | R        | R        |
|                 | 51Cr                | \         | \          | \        | \          | \             | /        | \          | \        | /        | \             | \          | \          | \        | \             | \        | \          | \        | \        |
| 全ペープ 放射能        | 濃度                  | 0.02      | 0.01       | 0.01     | 0.01       | 0.01          | 0.01     | 0.01       | 0.02     | 0.02     | 0.01          | 0.01       | 0.01       | 0.02     | 0.01          | 0.01     | 0.02       | 0.02     | 0.02     |
| 単位              |                     |           |            |          |            |               |          |            |          | Bq/L     | Putt<br>mBq/L |            |            |          |               |          |            |          |          |
| 茶色品品            | 1                   | R5. 4. 25 | R5. 5.10   | R5. 6. 7 | R5. 7.11   | R5. 8. 8      | R5. 9. 3 | R5. 10. 12 | R5.11.9  | R5.12. 5 | R5. 4.25      | R5. 5.10   | R5. 6. 7   | R5. 7.11 | R5. 8. 8      | R5. 9. 3 | R5. 10. 12 | R5.11.9  | R5.12. 5 |
| 採取地点番号及7枚80円的占名 | A O IN WASE MALE    |           |            |          |            | 1 第一(発)南放水口付近 |          |            |          |          |               |            |            |          | 2 第一(発)北放水口付近 |          |            |          |          |
| 種類又は            | 部位                  |           |            |          |            |               |          |            |          | -1<br>   | K<br>H        |            |            |          |               |          |            |          |          |
| 就将名             |                     |           |            |          |            |               |          |            |          |          | €<br>#        |            |            |          |               |          |            |          |          |

| X 独<br>翻                                | <b>Y</b>              | \        | \           | \        | \        | \                        | \        | \          | \       | \        | \             | \        | \        | \          | \            | \        | \          | \       | \        |
|-----------------------------------------|-----------------------|----------|-------------|----------|----------|--------------------------|----------|------------|---------|----------|---------------|----------|----------|------------|--------------|----------|------------|---------|----------|
|                                         | 244Cm                 | \        | \           | \        | \        | \                        | \        | \          | \       | \        | \             | \        | \        | \          | \            | \        | \          |         | \        |
|                                         | <sup>241</sup> Am     | \        | \           | \        | \        | \                        | \        | \          | \       |          | \             | \        |          | \          | \            | \        | \          | \       | \        |
|                                         | 239+240 Pu            | QN<br>Q  | 0.007       | 0.011    | Q.       | - ON                     | QN       | ND<br>ON   | QN<br>Q | ND       | 0.010         | 0.012    | ND       | QN<br>Q    | QN<br>Q      | QN       | QN         | 0.007   | ND       |
|                                         | ™ <sub>SS</sub> Pn    | ®        | QN<br>QN    | Ø.       | QV       | Ø.                       | Ø.       | Ø.         | - QN    | ND       | ND<br>ON      | Ø.       | ND       | Ø.         | - QN         | Ø.       | ND<br>ON   | QN.     | ND       |
|                                         | ∞Sr                   | 0.0008   | 0.012       | 0.0072   | 0.011    | 0.0018                   | Ð        | 0.0032     | 0.0030  | 0.0010   | 0.0009        | 0.0009   | 0.0016   | 0.0008     | Ð            | 0.0006   | 0.0008     | 0.0006  | 0, 0010  |
|                                         | *Sr                   | \        | \           | \        | \        | \                        | \        | \          | \       | /        | \             | \        | /        | \          | \            | \        | \          | \       | \        |
|                                         | $\mathbf{I}_{1\Xi 1}$ | \        | \           | \        | \        | \                        | \        | \          | \       | /        | \             | \        | /        | \          | \            | \        | \          | \       | \        |
|                                         | Н                     | ₽ I      | ND<br>0. 21 | 0.39     | ₽ I      | 0. 46                    | 0.09     | 0.25       | 0.47    | 0.14     | Ø I           | @ @      | ND -     | <b>⊗</b> I | <b>8 8</b>   | 0.15     | 0.05       | 0.17    | 0.07     |
| 郵                                       | 144 Ce                | Q.       | Q.          | Ø        | Ø.       | Ø                        | Q.       | Q.         | Ø       | ON ND    | Ø.            | Ø.       | ON ND    | Ø.         | Ø            | Q.       | QN         | ON      | ND       |
| 艦                                       | 137 <b>Cs</b>         | 0.006    | 0.14        | 0.12     | 0.16     | 0.055                    | 0.004    | 0.12       | 0.072   | 0.019    | 0.004         | 0.010    | 0, 025   | 0.006      | 0.004        | 0.004    | 0.008      | 0.008   | 0.006    |
| 種                                       | 134 Cs                | Ø.       | 0.003       | 0.003    | N N      | Ø.                       | Q.       | 0.003      | N N     | ON       | QN.           | Ø.       | ON       | Ø.         | N N          | Ø.       | QN         | QN      | ND       |
| 菘                                       | $^{125}\mathrm{Sb}$   | \        | \           | \        | \        | \                        | \        | \          | \       | \        | \             | \        | /        | \          | \            | \        | \          | /       | \        |
|                                         | 106Ru                 | Ð        | Ø           | ON.      | ON.      | Ø                        | - R      | Ø          | Q.      | ON       | QN.           | Ø        | ND       | Ø          | Q.           | Ð        | ON.        | ON      | ND       |
|                                         | 95Nb                  | Ð        | Ø           | ON.      | ON.      | Ø                        | - R      | Ð          | Q.      | ON       | ON.           | Ø        | ND       | Ø          | Q.           | Ð        | ON.        | ON      | ND       |
|                                         | <sup>96</sup> Zr      | Ð        | Ø           | ON.      | ON.      | Ø                        | - R      | Ø          | Q.      | ON       | ON.           | Ø        | ND       | Ø          | Q.           | Ð        | ON.        | ON      | ND       |
|                                         | %<br>%                | Ð        | Ø           | ON.      | ON.      | Ø                        | - R      | Ø          | Q.      | ON       | ON.           | Ø        | ND       | Ø          | Q.           | Ð        | ON.        | ON      | ND       |
|                                         | ∞ Fe                  | Ø        | Ø           | Ð        | Ð        | Ð                        | Ø        | Ø          | Ð       | ON.      | Ø             | Ð        | W        | Ð          | Ð            | Ø        | ON.        | ON.     | WD       |
|                                         | °S <sub>es</sub>      | Q.       | QN<br>QN    | Ð.       | Q.       | Q.                       | QN<br>QN | QN         | Q.      | ND       | Q.            | Q.       | ND       | Q.         | Q.           | QN<br>QN | ND         | ND      | ND       |
|                                         | 5⁴Mn                  | R        | R           | R        | Ø        | R                        | R        | R          | R       | ON.      | R             | R        | W)       | R          | R            | R        | Ø.         | ©.      | ND       |
|                                         | 51Cr                  | \        | \           | \        | \        | \                        | \        | \          | \       | /        | \             | \        | /        | \          | \            | \        | \          | /       | /        |
| 全ペープ放射能                                 | 濃度                    | 0.02     | 0.02        | 0.02     | 0.02     | 0.02                     | 0.01     | 0.02       | 0.02    | 0.02     | 0.02          | 0.01     | 0.02     | 0.01       | 0.02         | 0.01     | 0.02       | 0.02    | 0.02     |
| 単位                                      |                       |          |             |          |          |                          |          |            |         | Bq/L     | Pu∜‡<br>mBq/L |          |          |            |              |          |            |         |          |
| 林 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 | +21                   | R5. 4.25 | R5. 5.10    | R5. 6. 7 | R5. 7.11 | R5. 8. 8                 | R5. 9. 3 | R5. 10. 12 | R5.11.9 | R5.12. 5 | R5. 4.25      | R5. 5.10 | R5. 6. 7 | R5. 7.11   | R5. 8. 8     | R5. 9. 3 | R5. 10. 12 | R5.11.9 | R5.12. 5 |
| 採取地点番号工作時期上去                            | 次 OTX-WARE M-中        |          |             |          |          | 第一(発)取水口付近<br>(港湾出入口の外側) |          |            |         |          |               |          |          |            | 4 第一(発)神合2km |          |            |         |          |
| 種類又はは                                   | 部位                    |          |             |          |          |                          |          |            |         | 11       | 校国            |          |          |            |              |          |            |         |          |
| 武料名                                     |                       |          |             |          |          |                          |          |            |         |          | Ŕ<br>Ħ        |          |          |            |              |          |            |         |          |

|        | ¥<br>★             | \          | \        | \        | \        | \                  | \        | \        | \        | \        | \        | \        | \        | \             | \                   | \        | \          | \        | \        | \        | \           | \          | \             | \        | \       |
|--------|--------------------|------------|----------|----------|----------|--------------------|----------|----------|----------|----------|----------|----------|----------|---------------|---------------------|----------|------------|----------|----------|----------|-------------|------------|---------------|----------|---------|
|        | 244Cm              | \          | \        | \        | \        | \                  | \        | \        | \        | \        | \        | \        | \        | \             | \                   | \        | \          | \        | \        | \        | \           | \          | \             | \        | \       |
|        | <sup>241</sup> Am  | \          | \        | \        | \        | \                  | \        | \        | \        | \        | \        | \        | \        | \             | \                   | \        | \          | \        | \        | \        | \           | \          | \             | \        | \       |
|        | 239+240 Pu         | ND         | ND       | 0.007    | ND       | QN                 | ND       | ND       | ND       | QV       | ND       | 0.008    | ND       | QN            | ND                  | ND       | ND         | ND       | ND       | 0.010    | ND          | ND         | ND            | 0.010    | ND      |
|        | 238 <b>Pu</b>      | Ð          | Ø        | Ð        | Q.       | QN.                | ON.      | ND       | Ø.       | Ø        | QN<br>ON | QN       | Q.       | Ð             | Ø                   | QN       | QN<br>ON   | ND       | Ø        | QN<br>QN | ON O        | ND         | QN            | ND       | QN      |
|        | 30.<br>Sr          | 0.0007     | Ð        | 0.0005   | 0.0017   | 0.0012             | ON.      | ON.      | 0.0005   | 0.0006   | 0.0008   | 0.0009   | 0.0007   | 0.0013        | 0.0008              | Ø        | 0.0005     | 0.0006   | 0.0006   | 0.0009   | 0.0012      | ON.        | 0.0010        | 0.0011   | 0.0006  |
|        | *Sr                | \          | \        | \        | \        | \                  | \        | /        | \        | \        | \        | \        | \        | \             | \                   | \        | \          | \        | \        | \        | \           | \          | \             | \        | \       |
|        | $\mathbf{I}_{181}$ | \          | \        | \        | \        | \                  | \        | /        | \        | \        | \        | \        | \        | \             | \                   | \        | \          | \        | \        | \        | \           | \          | \             | \        | \       |
|        | щ.                 | <u>8</u> 1 | 9 9      | e I      | ₽ I      | ON ON              | 0. 63    | - W      | 0. 44    | 0.08     | ON I     | UN UN    | Q I      | e I           | 0. 39<br>ND         | 0.06     | - Q        | 0. 13    | 0.07     | ON ON    | ND<br>0. 12 | 0. 13      | - ON          | 0.32     | 0.06    |
| 一一一一   | 144Ce              | © N        | N N      | Ø.       | - QN     | ON.                | ND       | ND       | ©.       | Q.       | QN.      | QN       | Ø.       | e e           | N N                 | QN       | QN.        | ND       | Q.       | W)       | ND          | ND         | ON.           | ND       | ND      |
| 艦      | 137Cs              | 0.004      | 0.008    | 0.008    | 0.011    | 0.004              | 0.007    | 0.009    | 0.006    | 0.006    | 0.003    | 0.008    | 0.006    | 0.004         | 0.003               | 0.006    | 0.012      | 0.007    | 0.008    | 0.009    | 0.033       | 0.005      | 0.029         | 0.014    | 0.009   |
| 種      | 134 Cs             | QV         | QN.      | Ø.       | Ø.       | ND                 | ND       | ND       | ON.      | Q.       | QN       | QN       | Ø.       | QN<br>QN      | QN.                 | QN       | QN         | ND       | - R      | QV       | ND          | ND         | ON O          | ND       | ND      |
| 颒      | <sup>125</sup> Sb  | \          | \        | \        | \        | \                  | \        | /        | \        | \        | \        | \        | \        | \             | \                   | \        | \          | /        | \        | \        | \           | /          | /             | /        | \       |
|        | <sup>106</sup> Ru  | - Q        | QN       | Q.       | Ð        | ON.                | ND       | ND       | ND       | Ð        | QV       | ON       | Ð        | QN            | QN                  | ON       | QV         | ND       | Ð        | QN       | ND          | ND         | Ø             | ND       | ND      |
|        | 95Nb               | Ø          | Ð.       | Ð        | Q.       | ON                 | ON ND    | ND       | Ø.       | Ø        | ON ND    | ON       | Q.       | Ð             | Ð.                  | ON       | ON ND      | ND       | Ø        | ON.      | ON ND       | ND         | ON ND         | ND       | ON ND   |
|        | <sup>95</sup> Zr   | Ø          | Ð.       | Ð        | Q.       | ON                 | ON ND    | ND       | Ø.       | Ø        | ON ND    | ON       | Q.       | Ð             | Ð.                  | ON       | ON ND      | ND       | Ø        | ON.      | ON ND       | ND         | ON ND         | ND       | ON ND   |
|        | 80                 | Ø          | Ø        | Ø        | QN       | ON                 | ON       | ND       | Q.       | Ø        | ON.      | ON       | Q.       | Ø             | Ø                   | ON       | ON.        | ND       | Ø        | ON.      | ON          | ND         | ON.           | ND       | ON ND   |
|        | <sup>™</sup> Fe    | R          | Ø        | R        | R        | Ø.                 | ON.      | ON.      | Ø        | Ð        | ©.       | ©.       | R        | Ð             | Ø                   | ©.       | ©.         | ON.      | Ø        | Ø        | ON.         | ON.        | Ø.            | ON.      | © N     |
|        | °C <sub>8</sub>    | Ø.         | ON.      | Ø.       | ON.      | ON                 | ND       | ND       | ©.       | Ø        | ON.      | ON       | N N      | Ø.            | ON.                 | ON       | ON.        | ND       | Ø        | ND ND    | ND          | ND         | ON ND         | ND       | ND      |
|        | 54Mn               | Ð          | Ð        | Ð        | Ð        | Ð                  | Q.       | N        | Ø        | Ð        | Ð        | ©.       | Ð        | Ð             | Ð                   | ©.       | Ð          | ON.      | e        | Ð        | Q.          | QV.        | Ð             | ON.      | N       |
|        | <sup>51</sup> Cr   | \          | \        | \        | \        | /                  | \        | /        | \        | \        | \        | /        | \        | \             | \                   | /        | \          | /        | \        | \        | \           | /          | /             | /        | /       |
| 金ペプル   | 濃度                 | 0.01       | 0.01     | 0.02     | 0.02     | 0.02               | 0.01     | 0.02     | 0.02     | 0.02     | 0.02     | 0.01     | 0.01     | 0.01          | 0.02                | 0.01     | 0.02       | 0.02     | 0.02     | 0.01     | 0.01        | 0.01       | 0.02          | 0.02     | 0.02    |
| 無价     |                    |            |          |          |          |                    |          |          |          |          |          |          | Bq/L     | Putt<br>mBq/L |                     |          |            |          |          |          |             |            |               |          |         |
| 茶      | 牛月日                | R5. 4.25   | R5. 5.10 | R5. 6. 7 | R5. 7.11 | R5. 8. 8           | R5. 9. 3 | R5.10.12 | R5.11. 9 | R5.12. 5 | R5. 4.25 | R5. 5.10 | R5. 6. 7 | R5. 7.11      | R5. 8. 8            | R5. 9. 3 | R5. 10. 12 | R5.11. 9 | R5.12. 5 | R5. 5.10 | R5. 8. 8    | R5. 9. 3   | R5. 10. 12    | R5.11. 9 | R5.12.5 |
| 採取地点番号 | 及び採取地点名            |            |          |          |          | 夫沢・熊川沖2km<br>(大熊町) |          |          |          | _        |          |          |          |               | 双葉・前田川沖2km<br>(双葉町) |          |            |          | _        |          |             | ALPS処理水放出口 | 北 2 km西 0.5km |          |         |
| 種類又は対  | 部位                 |            |          |          |          | ro                 |          |          |          |          |          |          | -1<br>   | ※ 国外          | 9                   |          |            |          |          |          |             | r          |               |          |         |
| 就      |                    |            |          |          |          |                    |          |          |          |          |          |          |          | Ŕ<br>Ħ        |                     |          |            |          |          |          |             |            |               |          |         |

| 採取 単<br>年月日                      | 金ペープ単位 放射能 | <b>个组</b> |       |                     |        |                                   |                  |                   | 菰                 | 種     | 艦        | 赵                    |          |     |         |       |                   |           | 大然        |
|----------------------------------|------------|-----------|-------|---------------------|--------|-----------------------------------|------------------|-------------------|-------------------|-------|----------|----------------------|----------|-----|---------|-------|-------------------|-----------|-----------|
|                                  | 51Cr       |           | u     | °S <sub>8</sub> °C° | ™Fe 60 | <sup>60</sup> Co <sup>95</sup> Zr | qN <sub>96</sub> | <sup>106</sup> Ru | <sup>125</sup> Sb | 134Cs | 137Cs 14 | 1 <sup>54</sup> Ce 3 | Itet He  | *Sr | 90Sr    | 238Pu | 239+240 <b>Pu</b> | 241 Am 24 | 244Cm 40K |
| 0.01 ND                          | \          | Ð         |       | αN                  | N ON   | UN UN                             | QN               | ND                | \                 | ON.   | 0.009    | N ON                 | ON ON    | \   | 0.0011  | ND    | QN                | \         |           |
| 0. 01 ND                         | \          | Ø         |       | Q.                  | - QX   | UN ND                             | QN               | QN                | \                 | - R   | 0.007    | ON<br>N              | Q Q      | \   | Ð       | Q.    | QN                | \         | \         |
| 0. 01 ND                         | \          | N         |       | ND                  | ND N   | ND ND                             | ND               | ND                | \                 | ND    | 0.006    | ND 0.                | - 0.08   | /   | 0.0009  | ND    | ND                | /         | \         |
| 0. 01 ND                         | \          | W         |       | ND                  | ND N   | ND ND                             | ND               | ND                | \                 | ND    | 0.020    | ND 0.                | 0.05     | \   | 0.0006  | ND    | ND                | \         | \         |
| 0. 01 ND                         | \          | Ð         |       | QN<br>Q             | e<br>e | ON ON                             | QV               | Ø                 | \                 | £     | 0.011    | ON<br>ON             | 0.28     | \   | 0.0012  | - Q   | QN                | \         |           |
| 0.02 / ND                        | \          | ON        |       | ND                  | ND N   | ND ND                             | ND               | ND                |                   | ND    | 0.007    | ND 0.                | 0.06     | /   | 0.0009  | ND    | ND                | /         | \         |
| 0. 01 ND                         | \          | N)        |       | ND                  | ND N   | ND ND                             | ND               | ND                | /                 | ND    | 0.020    | ND NN N              | ND<br>ND | /   | 0. 0013 | ND    | ND                | /         | \         |
| Bq/L<br>Pu/±<br>mBσ/L<br>ND / ND | \          | W         |       | QN                  | N ON   | ND ND                             | ND               | ND                | \                 | ND    | 0.004    | ND NN                | ND ND    | \   | 0.0009  | ND    | ND                | \         |           |
| 0.01 ND                          | \          | Ø         |       | QV<br>Q             | e e    | ON ON                             | QV               | Ø                 | \                 | Ð     | 0.006    | ND 0.                | 0.12     | \   | 0.0006  | Q.    | QN                | \         |           |
| 0. 01 ND                         | \          | ON        |       | ND                  | ND N   | ND ND                             | ND               | ND                | \                 | ND    | 0.015    | ND 0                 | 0.27     | \   | QN      | ND    | ND                | \         |           |
| 0. 02 ND                         | \          | Ø         |       | Ø                   | Q Q    | ON ON                             | ND               | ON.               | \                 | ON ND | 0.012    | - N                  | 1.6      | \   | 0.0008  | ND    | ND                | \         |           |
| 0.02 ND                          | \          | R         |       | - R                 | e e    | ON ON                             | QN<br>Q          | QV                | \                 | £     | 0.012    | ND ON                | 0.09     | \   | 0.0008  | Q.    | QN                | \         |           |
| /                                | /          | ON.       |       | ND                  |        |                                   |                  | ND                | /                 |       |          |                      | / ON     | \   | 0.0007  | ON.   | 0.009             | /         | \         |
| 0.01 N ND                        | \ \        | 2 2       |       | ON ON               | 9 9    |                                   | 2 2              | 0 E               | \ \               | 0 E   | 0.012    | ON ON ON             | ON ON    | \ \ | \ \     | \ \   | \ \               | \ \       |           |
| . \                              | . \        | - R       |       | N N                 |        |                                   |                  | QN ON             | . \               |       |          |                      | QN QN    | . \ | 0.0009  | . 2   | 0.013             | . \       |           |
| \                                | \          | ©.        | . —   | ON                  |        |                                   |                  | ND                | \                 |       |          |                      | N        | \   | \       | \     | \                 | \         | \         |
|                                  | \          |           | - 1   | ON                  |        |                                   |                  | QN                | \                 | +     |          |                      | ON ON    | \   | \       | \     | \                 | \         |           |
|                                  |            |           |       | 2 9                 | 2 2    |                                   | 8 8              | 9 9               | 2 9               | ro. 4 | 180      | 2 2                  |          | \ \ | 8 5     | 2 2   | 0.23              | \ \       | 460       |
|                                  |            |           | - 1 - | E &                 |        |                                   |                  | 2 8               | 2 2               | 4.0   |          |                      |          | . \ | 9       | 2     | 0.13              | . \       | 480       |
|                                  |            |           | 1 -   | QN                  |        |                                   |                  | QN                | Ø.                | 3.1   |          | ON                   |          | \   | - N     | ND    | 0.26              | \         | / 480     |
| ON ON /                          |            |           | . –   | ND                  | ND ON  | ND ND                             | ND               | ND                | ND                | 3.5   | 150      | ND                   | \        | \   | ND      | ND    | 0.12              | /         | / 450     |
| ON ON /                          |            |           |       | QN                  | N ON   | ND ND                             | ND               | ND                | ND                | 3.5   | 180      | ND (N                | /        | /   | ON.     | ND    | 0.18              | /         | > 510     |
| ON ON /                          |            |           |       | ND                  | N ON   | ND ND                             | ND               | ND                | ND                | 4.1   | 190      | ND (N                | /        | /   | ON.     | ND    | 0.25              | /         | / 540     |
| Bq/kg乾 / ND ND                   |            |           |       | ND                  | ND N   | ND ND                             | ND               | ND                | ND                | 5.2   | 230      | ND                   | \        | \   | M       | ND    | 0.25              | \         | > 260     |
| ON ON /                          |            |           |       | ND                  | N W    | UD UD                             | ND               | ON                | QN.               | 3.4   | 170      | ON ON                | \        | \   | QN      | ND    | 0.26              | \         | / 540     |
| ON ON /                          |            |           |       | ON                  | N ON   | UN UN                             | QN.              | QN                | Q.                | ON.   | 38       | ND ON                |          | \   | QN      | Q.    | 0.41              | \         | / 460     |
| ON ON /                          |            |           |       | ND                  | ND N   | ND ND                             | ND               | ND                | ND<br>ND          | ND    | 44       | ND (N                | \        | \   | ND      | ND    | 0.38              | \         | 470       |
| ON ON /                          |            | ON.       | . –   | ND                  | ND N   | ND ND                             | ND               | ND                | ND                | ND    | 23       | ND (N                | \        | \   | ND      | ND    | 0.42              | /         | / 460     |
| ON ON _                          |            |           |       | ND                  | N<br>N | ND ND                             | ON.              | ND                | Q.                | ND    | 24       | ND                   | \        | \   | ND      | ON.   | 0.40              | \         | / 460     |
| ON ON /                          |            |           |       | ND                  | N ON   | ND ND                             | ON               | ND                | ON.               | N)    | 23       | ND                   | \        | \   | ON.     | ON.   | 0.41              | \         | / 490     |
| ON ON /                          |            |           | 1     | ND                  | N N    | ND ND                             | ND               | ND                | ND                | ON ON | 28       | - Q                  | \        | \   | ND      | ND    | 0.44              | \         | > 500     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 編  | 離 文質 | 採取地点番号及び採取地点名       | 採取<br>年月日  | 単位         | 金ペープ放射能 |  |     |      |                  |       |                   | 菰 | 種 | 艦 | 赵 |                  |    |       |                  |                       |        |       | 天然核種        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|---------------------|------------|------------|---------|--|-----|------|------------------|-------|-------------------|---|---|---|---|------------------|----|-------|------------------|-----------------------|--------|-------|-------------|
| Marie   Mar | ĦÉ | AZ.  |                     |            |            |         |  |     | °О С | <sup>36</sup> Zr | 95Nb  | <sup>106</sup> Ru |   |   |   |   | I <sub>181</sub> | Sr | °Sr   | nd <sub>8≅</sub> | <sup>239+240</sup> Pu | 241 Am | 244Cm | 40 <b>K</b> |
| Marie   Mar |    |      |                     |            |            | /       |  | Ø   | ND   | ND               | ND    | ND                |   |   |   | \ | \                | \  | ON.   | QN               | 0.28                  | /      | /     | 430         |
| Marie   Mar |    | 9    | 双集・前田川沖2km<br>(双集町) | 8.         |            | \       |  | © N | ND   | ND               | ND    | ND<br>ON          |   |   |   | \ | \                | \  | (N    | ΩN               | 0.29                  | /      | /     | 400         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |      |                     | R5.11.9    |            | \       |  | ®   | ON   | ON               | ON    | ON.               |   |   |   | \ | \                | \  | - N   | QN               | 0.39                  | \      | \     | 450         |
| ## 1 第一条                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |      |                     |            | <u> </u>   | \       |  | ON. | ON.  | ON               | ON    | Q.                |   |   |   | \ | \                | \  | ON.   | QN               | 0.22                  | \      | \     | 480         |
| Fig. 10   Fig. 12   Fig. 14   Fig. 14   Fig. 14   Fig. 14   Fig. 15   Fig. 14   Fig. 14   Fig. 15   Fig. 14   Fig. 15   Fig. 14   Fig. 15   Fig | 海  |      | 第二(発)南放水口           | 8.25       | Bq/kg 能    | \       |  | ®   | N N  | ON               | ON.   | Ð                 |   |   |   | \ | \                | \  | \     | \                | \                     | \      | \     | 400         |
| Hatter filter                      |    |      |                     | R5.11.24   |            | \       |  | ON. | ND   | ND               | ND    | ND<br>ND          |   |   |   | \ | \                | \  | \     | \                | /                     | \      | /     | 290         |
| Figure    |    |      |                     |            | <u> </u>   | \       |  | ®   | ON.  | ON               | QN    | R                 |   |   |   | \ | \                | \  | - N   | QN               | 0.27                  | \      | \     | 440         |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | ∞    | 第二(発)北放水口           |            |            | \       |  | ®   | ON   | ND               | ON    | ON.               |   |   |   | \ | \                | \  | \     | \                | \                     | \      | \     | 530         |
| 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |      |                     | R5.11.24   | <u> </u>   | \       |  | ON. | N    | ND               | ON    | Q.                |   |   |   | \ | \                | \  | \     | \                | \                     | \      | \     | 480         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 1    | いわき市                | R5. 10. 12 |            | \       |  | ®   | ON.  | ON               | ON    | Ð.                |   |   |   | \ | R                | \  | \     | \                | \                     | \      | \     | 86          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 2    | 田本市 七部              | R5. 10. 17 |            | \       |  | ®   | ND   | ON               | ON.   | Ð.                |   |   |   | \ | R                | \  | \     | \                | \                     | \      | \     | 72          |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 60   | 広野町 上北道             | R5. 10. 12 |            | \       |  | Ø   | ND   | ND               | ND    | ON.               |   |   |   | \ | R                | \  | \     | \                | \                     | \      | \     | 82          |
| 4         6         6         6         6         7         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | 4    | 楢葉町 被倉              | R5, 10, 12 |            | \       |  | Ø   | ND   | ND               | ND    | ND                |   |   |   | \ | QN               | \  | \     | /                | /                     | /      | /     | 72          |
| 4         1         大能性 美術         6         1         5         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 2    | 富岡町 小茶              | R5, 10, 19 |            | \       |  | Ø   | ND   | ND               | ND    | ND                |   |   |   | \ | QN               | \  | \     | /                | /                     | /      | /     | 7.7         |
| 千葉         大地町美税         1         大地町美税         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th< td=""><td></td><td>9</td><td>川内村 上川内</td><td>R5. 10. 17</td><td></td><td>\</td><td></td><td>Ø</td><td>ND</td><td>ND</td><td>ND ND</td><td>ON.</td><td></td><td></td><td></td><td>\</td><td>Ø</td><td>\</td><td>\</td><td>\</td><td>\</td><td>\</td><td>\</td><td>7.1</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 9    | 川内村 上川内             | R5. 10. 17 |            | \       |  | Ø   | ND   | ND               | ND ND | ON.               |   |   |   | \ | Ø                | \  | \     | \                | \                     | \      | \     | 7.1         |
| 二年業         8 大熊町 美折原         R5.10.24         Ph/Act         NG         ND         ND </td <td></td> <td>7</td> <td>大熊町 美沢</td> <td>R5. 10. 24</td> <td></td> <td>\</td> <td></td> <td>Ø</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ON.</td> <td></td> <td></td> <td></td> <td>\</td> <td>R</td> <td>\</td> <td>\</td> <td>\</td> <td>\</td> <td>\</td> <td>\</td> <td>72</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 7    | 大熊町 美沢              | R5. 10. 24 |            | \       |  | Ø   | ND   | ND               | ND    | ON.               |   |   |   | \ | R                | \  | \     | \                | \                     | \      | \     | 72          |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 |      | 大熊町 美川原             |            | 3q/kg生     | \       |  | Ø   | ND   | ND               | ND    | ON.               |   |   |   | \ | R                | \  | \     | \                | \                     | \      | \     | 87          |
| 10         独立性能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | 6    | 双葉町 郡山              | R5, 10, 24 |            | \       |  | Ø   | ND   | ND               | ND    | ND                |   |   |   | \ | QN               | \  | \     | /                | /                     | /      | /     | 57          |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 10   |                     | R5. 10. 19 |            | \       |  | Ø   | ND   | ND               | ND    | ND                |   |   | 7 | \ | QN.              | \  | \     | /                | /                     | \      | /     | 72          |
| 12         構造性 能で         R5.10.3         A         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | 11   | 葛尾村                 | R5. 10. 11 |            | \       |  | Ø   | ND   | ND               | ND ND | ON.               |   |   |   | \ | Ø                | \  | \     | \                | \                     | \      | \     | 74          |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 12   |                     | R5, 10, 19 |            | \       |  | Ø   | ND   | ND               | ND    | ND                |   |   |   | \ | QN               | \  | \     | /                | /                     | \      | /     | 74          |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 13   |                     | R5, 10, 3  |            | \       |  | Ø   | ND   | ND               | ND    | ND                |   |   |   | \ | QN               | \  | \     | /                | /                     | /      | /     | 06          |
| (本)         (本)         (本)         (本)         (本)         (本)         (本)         (x)         (x) <td></td> <td>14</td> <td></td> <td>R5.10.3</td> <td></td> <td>\</td> <td></td> <td>Ø</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td></td> <td></td> <td></td> <td>\</td> <td>QN.</td> <td>\</td> <td>\</td> <td>/</td> <td>/</td> <td>\</td> <td>/</td> <td>89</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 14   |                     | R5.10.3    |            | \       |  | Ø   | ND   | ND               | ND    | ND                |   |   |   | \ | QN.              | \  | \     | /                | /                     | \      | /     | 89          |
| 業         1         第一等海線         R5.7:19         A         ND         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 15   |                     | R5. 10. 11 |            | \       |  | ©.  | ND   | ND               | ND    | ND                |   |   |   | \ | QN               | /  | \     | /                | /                     | /      | /     | 68          |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |      |                     | 7. 19      | The Albert | \       |  | Ø   | ND   | ND               | ND    | ND                |   |   |   | \ | QN               | /  | 0.11  | ND               | 0.0094                | /      | /     | 290         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |      | 第二                  | 7. 4       | H SW /bc   | \       |  | (N  | ON   | ND               | ND    | ND<br>ON          |   |   |   | \ | ®                | /  | 0.088 | ΩN               | 0.0029                | /      | /     | 500         |

(注) 1 海水のトリチウム濃度の測定は、上段が竣圧蒸留法、下段が電解濃縮法による。

<sup>2</sup> 土壌及び松葉の5cの解掛け部分は東京電力ホールディングス株式会社福島第一原子力発電所から半径5m未満の地域、諸木及び衛底土の7c。の網掛け部分は東京電力ホールディングス株式会社福島第一原子力発電所の放販水口付近

<sup>3 「</sup>ND」:検出下限値未満 「/」:対象外核種 「一」:測定値なし

<sup>4</sup> 第一(発):東京電力ホールディングス辦福島第一原子力発電所 第二(発):東京電力ホールディングス辦福島第二原子力発電所

<sup>5</sup> 上記の他、人工放射性核種は検出されなかった。

| -5(2) 3     | 景境試料     | :中の核権議!   | 環境試料中の核種濃度 (比較対照地点)                   | (                                     |            |                    |                    |                    |      |          |          |          |      |                                |          |             |          |         |                  |       |            |                         |      |                  |      |           |             |           |          |       |
|-------------|----------|-----------|---------------------------------------|---------------------------------------|------------|--------------------|--------------------|--------------------|------|----------|----------|----------|------|--------------------------------|----------|-------------|----------|---------|------------------|-------|------------|-------------------------|------|------------------|------|-----------|-------------|-----------|----------|-------|
| 武<br>本<br>名 | 離るない。    |           | 採取地点番号<br>及び採取地点名                     | The vin                               | 探取<br>年月日  | 再位                 | 全へ、一7<br>放射能<br>濃度 |                    |      |          |          |          |      |                                |          | ***         | 一 一 一    | 種       | 艦                | 赵     |            |                         |      |                  |      |           |             |           |          | 大数    |
|             |          |           |                                       |                                       |            |                    | 1                  | $^{51}\mathrm{Cr}$ | StMn | °SCo     | ∞Fe      | °2009    | 6 ZZ | <sup>95</sup> Nb <sup>10</sup> | 106Ru 12 | 125Sb 134Cs | 3s 137Cs | s 144Ce | H <sub>E</sub> e | 131 I | $^{89}$ Sr | $^{12}$ S <sub>06</sub> | 234U | D <sub>522</sub> | 238U | 238Pu 231 | 239+240Pu 2 | 241Am 244 | 244Cm 40 | 40 K  |
|             |          | 1 福島市     | ##<br>##                              |                                       | R5. 5.16   |                    | \                  | QV.                | ND   | ND       | ND<br>ON | ND       | ND   | ND (N                          | ND N     | ND 17       | 008 2    | ND      | \                | \     | \          | 0.92                    | 7.0  | 0.26             | 6.9  | ON ON     | 0. 19 0.    | 2.0       | ND 4     | 150   |
|             |          | 2 郡山市     | 1                                     |                                       | R5. 5.17   | <u> </u>           | \                  | R                  | Q.   | QN<br>QN | N N      | QN       | - QN | ON.                            | N ON     | ND 43       | 1900     | QV      | \                | \     | \          | 0.26                    | \    | \                | \    | 0 0       | 0.02        | `         |          | 370   |
|             |          | 3 いわき市    | s市 前部町                                | its<br>Th                             | R5. 5.18   | 1                  | \                  | ND                 | ND   | QN       | ND       | ND<br>ON | ND   | ON                             | ND (N    | ND 1.9      | 9 71     | ND      | \                | \     | \          | ND<br>ND                | \    | /                | \    | ON ON     | 0.04        |           | 68       | 390   |
| 操           | 计        | 4 白河市     | 1 決省機計                                | 漫上 海川                                 | R5. 5.17   | Bq/kg乾             | \                  | ND                 | QN   | ND       | ND       | ND       | ND   | ON.                            | ND (N    | ND 18       | 190      | ND      | \                | \     | \          | 0.73                    | \    | /                | /    | ON ON     | 0.25        |           | 10       | 540   |
|             |          | 5 相馬市     | ************************************* |                                       | R5. 5.18   | 1                  | \                  | ND                 | ND   | ND       | ND       | ND       | ND   | ND                             | ND N     | ND 35       | 1600     | ND      | \                | /     | \          | 2.0                     | \    | \                | \    | 0.02 0    | 0.38        |           |          | 340   |
|             |          | 6 会津若松市   | 岩松市 二紫町                               | Ť.                                    | R5. 5.16   | I                  | \                  | - Q                | ND   | QN       | - Q      | ND       | ND   | QN.                            | ND N     | ND 6.9      | 9 340    | QN.     | \                | \     | \          | 0.39                    | \    | \                | \    | ON.       | ON.         | `         | 7        | 750   |
|             |          | 7 南会津町    | 斯 条彩                                  |                                       | R5. 5.16   | 1                  | \                  | ND                 | ND   | ND       | ND       | ND       | ND   | ND (N)                         | ND N     | ON ON       | ) 27     | ND      | \                | \     | \          | 0.87                    | \    | \                | /    | O ON      | 0.41        |           | 2        | 270   |
| +           | 수 LI 14명 | 1 福島市     | 1 清米質                                 | ×н                                    | R5. 7. 3   | Bq/L<br>Pu{\$mBq/L | \                  | (N                 | ON.  | QN       | ON.      | QN.      | e e  | QN                             | N ON     | ON ON       | QN O     | (N      | Ð                | \     | \          | 0,0010                  | \    | \                | /    | QN.       | ON.         |           | .0       | 0.018 |
|             | H H      | 2 会津若松市   | 指李節 指李節                               | £                                     | R5. 7. 3   | Bq/L               | \                  | ND                 | ND   | ND       | ND       | ND       | ND   | ND (N)                         | ND N     | ON ON       | 0.004    | 4 ND    | 0.42             | \     | \          | \                       | \    | \                | /    | \         | \           |           | .0       | 890   |
| 海水          | 表面水      | 1 相馬市     | ************************************* | 装無                                    | R5. 9. 25  | Bq/L<br>Pu{\$mBq/L | 0.05               | /                  | ND   | ND       | ND       | ND       | ND   | ND                             | ND (N    | / ND        | 0.005    | 5 ND    | ON.              | \     | \          | ND                      | \    | /                | /    | ND        | ND          | /         | ,        | _     |
| 海底土         | 海底土      | 1 相馬市     | ************************************* | ************************************* | R5. 9. 25  | Bq/kg乾             | /                  | ND                 | ND   | ND       | ND       | ND       | ND   | ND                             | ND 1     | UN UN       | 3.3      | ND      | \                | \     | \          | ND                      | \    | /                | /    | ND        | 0.20        | /         | 4        | 150   |
|             |          | 1 福島市     | ************************************* | 97. See 3                             | R5. 11. 20 |                    | \                  | (N                 | ON   | ND       | ND       | ND       | ND   | ON.                            | ND (N    | ON ON       | 0 2.0    | ND      | \                | ON    | \          | /                       | \    | \                | \    | \         | \           |           | 7        | 7.7   |
|             |          | 2 郡山市     | 1                                     |                                       | R5.11.8    | <u> </u>           | \                  | (N                 | QV   | ON.      | QV       | Ð.       | R    | QV<br>QV                       | - R      | ON ON       | 0 2.1    | R       | \                | ON.   | \          | \                       | \    | \                | \    | \         | \           | `         | 6        | 26    |
| 松           | 二年薬      | 3 白河市     |                                       | みなみのほ まち<br>南 登り町                     | R5.11.8    | Bq/kg生             | \                  | (N                 | ON   | ND       | ND       | ND       | ND   | ON.                            | ND (N    | ON ON       | 0.90     | ON (    | \                | QN    | \          | /                       | \    | \                | \    | \         | \           |           | 8        | 83    |
|             |          | 4 会津若松市   | 指松市 城東町<br>城東町                        |                                       | R5. 11. 13 |                    | \                  | Ø                  | Ø    | Q.       | Ø.       | Ø        | Q.   | Q.                             | e e      | Q Q         | 0.23     | Ø       | \                | Ð.    | \          | \                       | \    | \                | \    | \         | \           |           | 55       | 97    |
|             |          | 5 南会津町    | 뽸 条笛                                  |                                       | R5. 11. 13 | 1                  | \                  | ND                 | ND   | ND       | ND       | ND       | ND   | ND<br>ND                       | ND N     | ND ND       | ON C     | ND      | \                | QN    | \          | /                       | \    | \                | \    | \         | \           |           | 7        | 75    |
|             | Sun . hA | 表十多四上 11分 | . / .                                 | 41.45.51.54.66                        |            |                    |                    |                    |      |          |          |          |      |                                |          |             |          |         |                  |       |            |                         |      |                  |      |           |             |           |          | 1     |

(注) 1 「ND」: 検出下限値末満 「/」: 対象外核種

75

5-2-5(3) 環境試料中の核種濃度(速報のためのトリチウム迅速分析結果)

|                          |                   |                |               |                   |                |                |                |               | 探水田              | 皿            |               |               |                     |                   |                |                | (単位               | (単位: Bq/L)   |
|--------------------------|-------------------|----------------|---------------|-------------------|----------------|----------------|----------------|---------------|------------------|--------------|---------------|---------------|---------------------|-------------------|----------------|----------------|-------------------|--------------|
| 調査測点                     |                   |                |               |                   |                |                |                |               | R5               | 5            |               |               |                     |                   |                |                |                   |              |
|                          | 8/25              | 8/30           | 8/3           | 9/12              | 9/19           | 9/56           | 10/8           | 10/12         | 10/20            | 10/24        | 11/3          | 11/9          | 11/14               | 11/22             | 11/28          | 12/5           | 12/15             | 12/20        |
| 第一(発)南放水口付近              | ND                | N              | ND            | N                 | ND             | ND             | ND             | ND            | N                | ND           | ND            | ND            | ND                  | ND                | ND             | N              | ND                | ND           |
| 第一(発)北放水口付近              | ND                | ON N           | ND            | N)                | ND             | ND             | ND             | ND            | ND               | ND           | ND            | ND            | ND                  | ND                | ND             | ND             | ND                | N N          |
| 第一(発)取水口付近               | ND                | ND             | QN            | ŒN                | QN             | ΩN             | ND             | ND            | ND               | ΩN           | ND            | ND            | ND                  | ND                | ND             | ŒN             | ND                | ND           |
| 第一 (発) 沖合2km             | N                 | ON N           | ND            | ON.               | ND             | ON.            | ND             | ND            | ND               | ND           | ND            | ND            | ND                  | ND                | ND             | ND             | ND                | ND           |
| 夫沢・熊川沖2km                | N<br>QN           | ON N           | ND            | QN                | ND             | ON.            | ND             | ND            | ND               | ND           | ND            | ND            | ND                  | ND                | ND             | ND             | ND                | ND           |
| 双葉・前田川沖2km               | ND                | ND             | ND            | QN                | ND             | QN             | ND             | ND            | ND               | QN           | ND            | ND            | ND                  | ND                | ND             | QN             | ND                | ND           |
| ALPS処理水放出口<br>北2km西0.5km | ND                | ON N           | ND            | QN                | ND             | QN             | ND             | ND            | ND               | ND           | ND            | ND            | ND                  | ND                | ND             | ND             | ND                | N            |
| ALPS処理水放出口<br>北1km       | ND                | ND             | ND            | ΩN                | ND             | QN             | ND             | ND            | ND               | ΩN           | ND            | ND            | ND                  | ND                | ND             | QN             | ND                | ND           |
| ALPS処理水放出口<br>南 1 km     | ND                | ND             | ND            | ND                | ND             | ND             | ND             | ND            | ND               | ND           | ND            | ND            | ND                  | ND                | ND             | ND             | ND                | ND           |
| 検出下限値                    | $\frac{3.7}{4.1}$ | $3.9 \sim 4.4$ | $3.8^{\circ}$ | $\frac{3.4}{4.0}$ | $5.0 \sim 6.3$ | $3.7 \sim 4.0$ | $3.7 \sim 4.6$ | $3.8^{\circ}$ | $4.1^{\sim}$ 4.6 | $4.1^{\sim}$ | $4.2^{\circ}$ | $3.6^{\circ}$ | $4.0^{\circ}$ $4.6$ | $3.6^{\circ}$ 3.9 | $3.9 \sim 4.3$ | $4.0 \sim 4.4$ | $4.3^{\circ}$ 5.1 | $4.2^{\sim}$ |
| (注) 1 [ND]·格出下限值未滞       |                   |                |               |                   |                |                |                |               |                  |              |               |               |                     |                   |                |                |                   |              |

(注) 1 「ND」: 検出下限値未満

| I ALPS処理水放出期間中の採水

#### 5-3 試料採取時の付帯データ集 (原子力発電所周辺等環境放射能測定)

#### 1 上水

| No. | 採取地点名 | 採取年月日      | 気温<br>(℃) | 水温<br>(℃) | pН   |
|-----|-------|------------|-----------|-----------|------|
|     |       | R5. 4. 5   | 21.6      | 13. 9     | 7.2  |
| 1   | いわき市  | R5. 7. 4   | 26.8      | 23.0      | 7. 2 |
|     |       | R5. 10. 3  | 24.7      | 24. 5     | 7.4  |
|     |       | R5. 4. 7   | 17.9      | 12. 1     | 7.8  |
| 2   | 田村市   | R5. 7. 4   | 23.6      | 22.0      | 7.8  |
|     |       | R5. 10. 3  | 21.0      | 20.0      | 7.8  |
|     |       | R5. 4. 5   | 18.7      | 11.5      | 7. 1 |
| 3   | 広野町   | R5. 7. 5   | 25.4      | 21.5      | 7.2  |
|     |       | R5. 10. 4  | 21.8      | 21.2      | 7.4  |
|     |       | R5. 4. 5   | 20.3      | 13.0      | 7.0  |
| 4   | 楢葉町   | R5. 7. 5   | 24. 3     | 23.0      | 6.9  |
|     |       | R5. 10. 4  | 22.3      | 22.6      | 7.0  |
|     |       | R5. 4. 7   | 20.5      | 17. 1     | 7.4  |
| 5   | 富岡町   | R5. 7. 6   | 28.8      | 24. 3     | 7.6  |
|     |       | R5. 10. 4  | 21.9      | 23. 5     | 7.5  |
|     |       | R5. 4. 7   | 18.4      | 16. 1     | 7.4  |
| 6   | 川内村   | R5. 7. 3   | 28.9      | 17.8      | 7.2  |
|     |       | R5. 10. 2  | 22.2      | 17.5      | 7.5  |
|     |       | R5. 4. 6   | 22.9      | 14.8      | 7.2  |
| 7   | 大熊町   | R5. 7. 6   | 28.6      | 26.0      | 7.4  |
|     |       | R5. 10. 4  | 20.9      | 26.0      | 7.4  |
|     |       | R5. 4. 6   | 19.9      | 14.0      | 7. 1 |
| 8   | 双葉町   | R5. 7. 6   | 28.0      | 25.0      | 7.3  |
|     |       | R5. 10. 5  | 24. 3     | 25. 5     | 7.2  |
|     |       | R5. 4. 6   | 20.5      | 14.2      | 7. 5 |
| 9   | 浪江町   | R5. 7. 7   | 30.4      | 23.5      | 7. 5 |
|     |       | R5. 10. 5  | 23.4      | 24. 5     | 7.6  |
|     |       | R5. 4. 4   | 15.0      | 11.0      | 7.2  |
| 10  | 葛尾村   | R5. 7. 5   | 24. 2     | 22.8      | 6. 7 |
|     |       | R5. 10. 11 | 18. 9     | 19. 3     | 7.5  |
|     |       | R5. 4. 6   | 19. 0     | 15. 3     | 7. 1 |
| 11  | 南相馬市  | R5. 7. 7   | 28. 4     | 25.0      | 7.0  |
|     |       | R5. 10. 5  | 21.6      | 25.0      | 7. 1 |
|     |       | R5. 4. 4   | 11.5      | 11.5      | 7.4  |
| 12  | 飯舘村   | R5. 7. 7   | 30.6      | 24. 1     | 6. 9 |
|     |       | R5. 10. 3  | 18.0      | 23. 2     | 6.8  |
|     |       | R5. 4. 4   | 16. 2     | 11.0      | 7.2  |
| 13  | 川俣町   | R5. 7. 7   | 31.6      | 18. 9     | 6. 9 |
|     |       | R5. 10. 11 | 20.3      | 18.2      | 7.5  |

#### 2 海水

| No. | 採取地点名               | 採取年月日      | 気温<br>(℃) | 水温<br>(℃) | рΗ   | C1 <sup>-</sup><br>(‰) |
|-----|---------------------|------------|-----------|-----------|------|------------------------|
|     |                     | R5. 4.25   | 10.5      | 13. 2     | 8. 1 | 22. 5                  |
|     |                     | R5. 5. 10  | 14. 5     | 14. 8     | 8. 1 | 21.8                   |
|     |                     | R5. 6. 7   | 21.0      | 16. 5     | 7.8  | 21. 1                  |
|     |                     | R5. 7.11   | 25. 5     | 22. 5     | 8. 1 | 20.7                   |
| 1   | 第一(発)南放水口付近         | R5. 8. 8   | 27.0      | 20.5      | 8.0  | 20. 1                  |
|     |                     | R5. 9. 3   | 26. 5     | 21.0      | 8.0  | 20.7                   |
|     |                     | R5. 10. 12 | 17.5      | 20.5      | 8. 0 | 19. 9                  |
|     |                     | R5. 11. 9  | 14. 5     | 18.0      | 8. 0 | 20. 1                  |
|     |                     | R5. 12. 5  | 9.0       | 12.5      | 8.0  | 20.8                   |
|     |                     | R5. 4.25   | 11.0      | 13.0      | 8. 1 | 22.3                   |
|     |                     | R5. 5.10   | 14. 5     | 14.8      | 8. 1 | 22.0                   |
|     |                     | R5. 6. 7   | 20.5      | 17.0      | 7.9  | 21.6                   |
|     |                     | R5. 7.11   | 24. 5     | 23.5      | 8. 1 | 22.0                   |
| 2   | 第一(発)北放水口付近         | R5. 8. 8   | 26. 5     | 20.5      | 8.0  | 20.6                   |
|     |                     | R5. 9. 3   | 24.0      | 21.5      | 8.0  | 20.7                   |
|     |                     | R5. 10. 12 | 15. 5     | 20.0      | 8.0  | 19.9                   |
|     |                     | R5.11. 9   | 12.5      | 18.0      | 8.0  | 19.9                   |
|     |                     | R5. 12. 5  | 8.0       | 12.0      | 8.0  | 20.7                   |
|     |                     | R5. 4.25   | 10.5      | 13. 5     | 8. 1 | 23.2                   |
|     |                     | R5. 5.10   | 14.5      | 15.0      | 8.0  | 21.6                   |
|     |                     | R5. 6. 7   | 20.5      | 17.5      | 8.0  | 21.2                   |
|     | 第一(発)取水口付近          | R5. 7.11   | 25.0      | 22.5      | 8.0  | 21.2                   |
| 3   | (港湾出入口の外側)          | R5. 8. 8   | 26. 5     | 20.0      | 8.0  | 20.8                   |
| -   |                     | R5. 9. 3   | 24.0      | 21.5      | 8.0  | 20.9                   |
|     |                     | R5. 10. 12 | 15. 5     | 20.0      | 8.0  | 20.1                   |
|     |                     | R5. 11. 9  | 12.5      | 17. 5     | 8.0  | 20.5                   |
|     |                     | R5. 12. 5  | 8. 0      | 12.0      | 8.0  | 20.3                   |
|     |                     | R5. 4.25   | 10.5      | 13. 5     | 8. 1 | 22.3                   |
|     |                     | R5. 5. 10  | 15. 0     | 14. 5     | 8. 1 | 22.0                   |
|     |                     | R5. 6. 7   | 19.0      | 17.0      | 7.9  | 21. 2                  |
|     | fato (=1/c) > 1 A = | R5. 7.11   | 23. 5     | 23. 0     | 8. 1 | 21. 2                  |
| 4   | 第一(発)沖合2km          | R5. 8. 8   | 25. 0     | 20. 5     | 8.0  | 20.6                   |
|     |                     | R5. 9. 3   | 23. 5     | 21. 2     | 8. 0 | 21.0                   |
|     |                     | R5. 10. 12 | 15. 0     | 20.0      | 8. 1 | 20.4                   |
|     |                     | R5. 11. 9  | 12.0      | 18.0      | 8. 1 | 20. 4                  |
|     |                     | R5. 12. 5  | 7. 0      | 13. 0     | 8. 1 | 20.9                   |

|    |                      | R5. 4.25   | 9. 5  | 14.0  | 8. 1 | 22.7  |
|----|----------------------|------------|-------|-------|------|-------|
|    |                      | R5. 5.10   | 13.5  | 14. 5 | 8. 1 | 21.7  |
|    |                      | R5. 6. 7   | 18.5  | 16.5  | 7.9  | 20.9  |
|    |                      | R5. 7.11   | 23.5  | 22.5  | 8. 1 | 20.9  |
| 5  | 夫沢・熊川沖2km            | R5. 8. 8   | 24. 5 | 20.0  | 8.0  | 21.0  |
|    |                      | R5. 9. 3   | 23.0  | 20.5  | 8.0  | 21.3  |
|    |                      | R5. 10. 12 | 14.0  | 20.0  | 8. 1 | 19.8  |
|    |                      | R5.11. 9   | 12.5  | 18. 5 | 8. 1 | 20.8  |
|    |                      | R5. 12. 5  | 7.0   | 13.0  | 8. 1 | 20.9  |
|    |                      | R5. 4.25   | 11.0  | 12.5  | 8. 1 | 22.5  |
|    |                      | R5. 5.10   | 15. 5 | 14. 5 | 8. 1 | 21.7  |
|    |                      | R5. 6. 7   | 19.5  | 17.0  | 7. 9 | 21.5  |
|    |                      | R5. 7.11   | 24. 5 | 23.0  | 8. 1 | 20.6  |
| 6  | 双葉・前田川沖2km           | R5. 8. 8   | 25. 5 | 21.0  | 8.0  | 21.0  |
|    |                      | R5. 9. 3   | 24.0  | 21. 2 | 8.0  | 20.7  |
|    |                      | R5. 10. 12 | 15. 0 | 20.0  | 8.0  | 20.0  |
|    |                      | R5. 11. 9  | 12.0  | 18.0  | 8. 1 | 20.5  |
|    |                      | R5. 12. 5  | 6.0   | 12.5  | 8. 1 | 20.2  |
|    |                      | R5. 5.10   | 15.0  | 14. 5 | 8. 1 | 21.4  |
|    | / / / /              | R5. 8. 8   | 25.0  | 20.5  | 8.0  | 21. 2 |
| 7  | ALPS処理水放             | R5. 9. 3   | 24.0  | 21.5  | 8.0  | 21. 1 |
| 7  | 出口<br>北2km西0.5km     | R5. 10. 12 | 15.0  | 20.0  | 8.0  | 20.0  |
|    | AL Z KIII Z V. JKIII | R5.11. 9   | 12.0  | 18.0  | 8.0  | 20.3  |
|    |                      | R5. 12. 5  | 6.5   | 12.0  | 8.0  | 20.7  |
|    |                      | R5. 5.10   | 14. 5 | 14. 5 | 8. 1 | 21.8  |
|    | 4 T D O (11 TH 1 1/1 | R5. 8. 8   | 24. 5 | 19. 5 | 8.0  | 21.5  |
| 8  | ALPS処理水放<br>出口       | R5. 9. 3   | 23. 5 | 21. 2 | 8.0  | 20.7  |
| 0  | 北1km                 | R5. 10. 12 | 15. 5 | 20.0  | 8.0  | 19.8  |
|    |                      | R5.11. 9   | 12.5  | 18.0  | 8.0  | 20.3  |
|    |                      | R5. 12. 5  | 8.0   | 12.0  | 8. 1 | 20.6  |
|    |                      | R5. 5. 10  | 14. 5 | 14.8  | 8. 1 | 21.7  |
|    |                      | R5. 8. 8   | 27.0  | 20.0  | 8.0  | 20.6  |
| 9  | ALPS処理水放             | R5. 9. 3   | 24. 5 | 21.7  | 8.0  | 20.6  |
| 9  | 出口<br>南 1 km         | R5. 10. 12 | 16.5  | 20.5  | 8. 1 | 20.0  |
|    | 1.1.1 T IVIII        | R5. 11. 9  | 13.0  | 18.0  | 8. 1 | 20.6  |
|    |                      | R5. 12. 5  | 8.0   | 12.0  | 8. 1 | 21.3  |
|    |                      | R5. 5. 12  | 18.4  | 16.7  | 8. 1 | 18.8  |
| 10 | 第二(発)南放水口            | R5. 8.25   | 28.0  | 22.8  | 8.0  | 19.3  |
|    |                      | R5. 11. 24 | 15.0  | 14.0  | 8. 1 | 18.7  |
|    |                      | R5. 5. 12  | 19.0  | 16.0  | 8. 1 | 19. 1 |
| 11 | 第二(発)北放水口            | R5. 8.25   | 26.0  | 21.4  | 8.0  | 19. 2 |
|    |                      | R5. 11. 24 | 20.0  | 14.0  | 8. 1 | 18.6  |

#### (比較対照地点環境放射能測定)

### 1 上水

| No. | 採取地点名 | 採取年月日    | 気温<br>(℃) | 水温<br>(℃) | рΗ   |
|-----|-------|----------|-----------|-----------|------|
| 1   | 福島市   | R5. 7. 3 | 25. 5     | 16.4      | 6.8  |
| 2   | 会津若松市 | R5. 7. 3 | 29.5      | 25. 5     | 7. 2 |

#### 2 海水

| No. | 採取地点名   | 採取年月日     | 気温<br>(℃) | 水温<br>(℃) | рΗ  | C1 <sup>-</sup><br>(‰) |
|-----|---------|-----------|-----------|-----------|-----|------------------------|
| 1   | 相馬市松川浦沖 | R5. 9. 25 | 26.0      | 16.5      | 8.0 | 31                     |

令和5年度月別降水データ表

| 降水量(mm) | 30.0                                                                                                                                   | 135.5                                                                                                                            | 166.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 327.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    | 806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 時間(h)   | 28                                                                                                                                     | 62                                                                                                                               | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    | 438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 日数      | 2                                                                                                                                      | 12                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A       | R5.4                                                                                                                                   | 2                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R6. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                  | 中二                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 降水量(mm) | 52.5                                                                                                                                   | 113.0                                                                                                                            | 209. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 307.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    | 963. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 時間(h)   | 45                                                                                                                                     | 73                                                                                                                               | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    | 465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 日数      | 9                                                                                                                                      | 13                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 月       | R5.4                                                                                                                                   | 2                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R6. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                  | <b>√</b> □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                        |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 降水量(mm) | 58.0                                                                                                                                   | 107.0                                                                                                                            | 204.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 283.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    | 971.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 時間(h)   | 42                                                                                                                                     | 69                                                                                                                               | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    | 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 日数      | 9                                                                                                                                      | 10                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 月       | R5. 4                                                                                                                                  | 2                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R6. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                  | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm) | 日数<br>4時間(h)<br>6陰水量(mm)<br>6時間(h)<br>7陰水量(mm)<br>6月日数<br>6時間(h)<br>6陰水量(mm)<br>6月日数<br>7時間(h)<br>6陰水量(mm)<br>7458.0R5.4785.4728 | 日数       時間(h)       降水量(mm)       日数       時間(h)       降水量(mm)       日数       時間(h)       降水量(mm)         4       人名       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 | 4         6         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 | 4       6       4       6       4       6       4       6       4       6       4       6       4       6       4       6       4       6       4       6       4       6       4       6       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7 | 4         6         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         4         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7 | 日数         時間(h)         降水量(mm)         日数         時間(h)         降水量(mm)         降水量(mm)         時間(h)         降水量(mm)         時間(h)         降水量(mm)           4         1         5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td>日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)         日数         時間(h)         時間(h)         日数         時間(h)         日数         時間(h)         日数         日期         日期</td><td>4         6         42         58.0         R5.4         6         45         52.5         R5.4         6         45         52.6         R5.4         6         45         52.6         R5.4         7         R5.4         R6.4         R7         R5.4         R5.7         R5.4         R5.4         R5.5         R5.4         R5.4         R5.5         R5.4         R5.4         R5.5         R5.4         R5.7         R5.4         R5.1         R5.4         R5.1         R5.4         R5.1         R5.4         R5.1</td><td>1 数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)         日数         時間(h)         降水量(mm)         日数         日期         日期</td><td>日数         時間(h)         降水量(mm)         日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)           1         1         1         1         4         45         5.5         13         2.0         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30</td><td>日数         時間(h)         降木量(mm)         月         日数         時間(h)         降木量(mm)         日本量(mm)         日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本</td><td>日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)           4         6         4         6         45         52.5         8         73         113.0         8         73         113.0         75         12         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         &lt;</td></t<> | 日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)         日数         時間(h)         時間(h)         日数         時間(h)         日数         時間(h)         日数         日期         日期 | 4         6         42         58.0         R5.4         6         45         52.5         R5.4         6         45         52.6         R5.4         6         45         52.6         R5.4         7         R5.4         R6.4         R7         R5.4         R5.7         R5.4         R5.4         R5.5         R5.4         R5.4         R5.5         R5.4         R5.4         R5.5         R5.4         R5.7         R5.4         R5.1         R5.4         R5.1         R5.4         R5.1         R5.4         R5.1 | 1 数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)         日数         時間(h)         降水量(mm)         日数         日期         日期 | 日数         時間(h)         降水量(mm)         日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)           1         1         1         1         4         45         5.5         13         2.0         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30 | 日数         時間(h)         降木量(mm)         月         日数         時間(h)         降木量(mm)         日本量(mm)         日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本 | 日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)         月         日数         時間(h)         降水量(mm)           4         6         4         6         45         52.5         8         73         113.0         8         73         113.0         75         12         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         135.0         75         < |

| 試料名    | 採取地点名     | 採取年月日<br>R5. 4. 1 ~ R5. 5. 1 | <b>全α・</b> β | ν          | 131 T | 2              |    |   |    |        |
|--------|-----------|------------------------------|--------------|------------|-------|----------------|----|---|----|--------|
|        |           |                              |              | 7          | 101   | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|        |           | D =                          | 連続           | R5. 5.24   |       |                |    |   |    |        |
|        |           | R5. 5. 1 ~ R5. 6. 1          | 連続           | R5. 6.15   |       |                |    |   |    |        |
|        |           | R5. 6. 1 ~ R5. 7. 1          | 連続           | R5. 7.23   |       |                |    |   |    |        |
|        |           | R5. 7. 1 ~ R5. 8. 1          | 連続           | R5. 8.17   |       |                |    |   |    |        |
|        | いわき市 小川   | R5. 8. 1 ~ R5. 9. 1          | 連続           | R5. 9.24   |       |                |    |   |    |        |
|        |           | R5. 9. 1 ~ R5. 10. 1         | 連続           | R5. 10. 20 |       |                |    |   |    |        |
|        |           | R5. 10. 1 ~ R5. 10. 3        | 連続           | R5. 11. 29 |       |                |    |   |    |        |
|        |           | R5. 11. 15 ~ R5. 12. 1       | 連続           | R5. 12. 20 |       |                |    |   |    |        |
|        |           | R5. 12. 1 ~ R6. 1. 1         | 連続           | R6. 1.22   |       |                |    |   |    |        |
|        |           | R5. 4. 1 ~ R5. 5. 1          | 連続           | R5. 5.24   |       |                |    |   |    |        |
|        |           | R5. 5. 1 ~ R5. 6. 1          | 連続           | R5. 6.16   |       |                |    |   |    |        |
|        |           | R5. 6. 1 ~ R5. 7. 1          | 連続           | R5. 7.24   |       |                |    |   |    |        |
|        |           | R5. 7. 1 ~ R5. 8. 1          | 連続           | R5. 8.18   |       |                |    |   |    |        |
|        | 田村市 都路馬洗戸 | R5. 8. 1 ~ R5. 9. 1          | 連続           | R5. 9.24   |       |                |    |   |    |        |
|        |           | R5. 9. 1 ~ R5. 10. 1         | 連続           | R5. 10. 21 |       |                |    |   |    |        |
|        |           | R5. 10. 1 ~ R5. 10. 4        | 連続           | R5. 11. 29 |       |                |    |   |    |        |
|        |           | R5. 11. 22 ~ R5. 12. 1       | 連続           | R5. 12. 21 |       |                |    |   |    |        |
| 大気浮遊じん |           | R5. 12. 1 ∼ R6. 1. 1         | 連続           | R6. 1.23   |       |                |    |   |    |        |
|        |           | R5. 4. 1 ~ R5. 5. 1          | 連続           | R5. 5.20   |       |                |    |   |    |        |
|        |           | R5. 5. 1 ∼ R5. 6. 1          | 連続           | R5. 6.17   |       |                |    |   |    |        |
|        |           | R5. 6. 1 ~ R5. 7. 1          | 連続           | R5. 7.14   |       |                |    |   |    |        |
|        |           | R5. 7. 1 ~ R5. 8. 1          | 連続           | R5. 8.15   |       |                |    |   |    |        |
|        | 広野町 小滝平   | R5. 8. 1 ~ R5. 9. 1          | 連続           | R5. 9.15   |       |                |    |   |    |        |
|        |           | R5. 9. 1 ~ R5. 10. 1         | 連続           | R5. 10. 13 |       |                |    |   |    |        |
|        |           | R5. 10. 1 ~ R5. 11. 1        | 連続           | R5. 11. 17 |       |                |    |   |    |        |
|        |           | R5. 11. 1 ~ R5. 11. 29       | 連続           | R5. 12. 20 |       |                |    |   |    |        |
|        |           | R5. 4. 1 ~ R5. 5. 1          | 連続           | R5. 5.21   |       |                |    |   |    |        |
|        |           | R5. 5. 1 ~ R5. 6. 1          | 連続           | R5. 6.18   |       |                |    |   |    |        |
|        |           | R5. 6. 1 ~ R5. 7. 1          | 連続           | R5. 7.15   |       |                |    |   |    |        |
|        |           | R5. 7. 1 ~ R5. 8. 1          | 連続           | R5. 8.22   |       |                |    |   |    |        |
|        | 楢葉町 木戸ダム  | R5. 8. 1 ~ R5. 9. 1          | 連続           | R5. 9.16   |       |                |    |   |    |        |
|        |           | R5. 9. 1 ~ R5. 10. 1         | 連続           | R5. 10. 13 |       |                |    |   |    |        |
|        |           | R5. 10. 1 ~ R5. 11. 1        | 連続           | R5. 11. 18 |       |                |    |   |    |        |
|        |           | R5. 11. 1 ~ R5. 12. 1        | 連続           | R5. 12. 15 |       |                |    |   |    |        |
|        |           | R5. 12. 1 ~ R6. 1. 1         | 連続           | R6. 1.19   |       |                |    |   |    |        |

| 試料名      | 採取地点名                                   | 採取年月日                  |              |            |           | 測定年月日          |    |   |    |        |
|----------|-----------------------------------------|------------------------|--------------|------------|-----------|----------------|----|---|----|--------|
| P(11/1)  | 1.4.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 |                        | <b>全α・</b> β | γ          | $^{131}I$ | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|          |                                         | R5. 4. 1 ∼ R5. 5. 1    | 連続           | R5. 5.19   |           |                |    |   |    |        |
|          |                                         | R5. 5. 1 ∼ R5. 6. 1    | 連続           | R5. 6.16   |           |                |    |   |    |        |
|          |                                         | R5. 6. 1 ~ R5. 7. 1    | 連続           | R5. 7.16   |           |                |    |   |    |        |
|          |                                         | R5. 7. 1 ∼ R5. 8. 1    | 連続           | R5. 8.16   |           |                |    |   |    |        |
|          | 楢葉町 繁岡                                  | R5. 8. 1 ∼ R5. 9. 1    | 連続           | R5. 9.17   |           |                |    |   |    |        |
|          |                                         | R5. 9. 1 ∼ R5. 10. 1   | 連続           | R5. 10. 14 |           |                |    |   |    |        |
|          |                                         | R5. 10. 1 ∼ R5. 11. 1  | 連続           | R5. 11. 19 |           |                |    |   |    |        |
|          |                                         | R5. 11. 1 ∼ R5. 12. 1  | 連続           | R5. 12. 16 |           |                |    |   |    |        |
|          |                                         | R5. 12. 1 ~ R6. 1. 1   | 連続           | R6. 1.20   |           |                |    |   |    |        |
|          |                                         | R5. 4. 1 ∼ R5. 5. 1    | 連続           | R5. 5.21   |           |                |    |   |    |        |
|          |                                         | R5. 5. 1 ∼ R5. 6. 1    | 連続           | R5. 6.17   |           |                |    |   |    |        |
|          |                                         | R5. 6. 1 ∼ R5. 7. 1    | 連続           | R5. 7.17   |           |                |    |   |    |        |
|          |                                         | R5. 7. 1 ∼ R5. 8. 1    | 連続           | R5. 8.16   |           |                |    |   |    |        |
|          | 富岡町 富岡                                  | R5. 8. 1 ~ R5. 9. 1    | 連続           | R5. 9.26   |           |                |    |   |    |        |
|          |                                         | R5. 9. 1 ~ R5. 10. 1   | 連続           | R5. 10. 15 |           |                |    |   |    |        |
|          |                                         | R5. 10. 1 ~ R5. 11. 1  | 連続           | R5. 11. 17 |           |                |    |   |    |        |
| I Franks |                                         | R5. 11. 1 ~ R5. 12. 1  | 連続           | R5. 12. 17 |           |                |    |   |    |        |
| 大気浮遊じん   |                                         | R5. 12. 1 ~ R6. 1. 1   | 連続           | R6. 1.21   |           |                |    |   |    |        |
|          |                                         | R5. 4. 1 ~ R5. 5. 1    | 連続           | R5. 5.25   |           |                |    |   |    |        |
|          |                                         | R5. 5. 1 ~ R5. 6. 1    | 連続           | R5. 6.18   |           |                |    |   |    |        |
|          |                                         | R5. 6. 1 ~ R5. 7. 1    | 連続           | R5. 7.24   |           |                |    |   |    |        |
|          | 川内村 下川内                                 | R5. 7. 1 ~ R5. 8. 1    | 連続           | R5. 8. 19  |           |                |    |   |    |        |
|          |                                         | R5. 8. 1 ~ R5. 9. 1    | 連続           | R5. 9.24   |           |                |    |   |    |        |
|          |                                         | R5. 9. 1 ~ R5. 10. 1   | 連続           | R5. 10. 21 |           |                |    |   |    |        |
|          |                                         | R5. 10. 1 ~ R5. 11. 1  | 連続           | R5. 11. 20 |           |                |    |   |    |        |
|          |                                         | R5. 11. 1 ~ R5. 11. 28 | 連続           | R5. 12. 21 |           |                |    |   |    |        |
|          |                                         | R5. 4. 1 ~ R5. 5. 1    | 連続           | R5. 5. 19  |           |                |    |   |    |        |
|          |                                         | R5. 5. 1 ~ R5. 6. 1    | 連続           | R5. 6.16   |           |                |    |   |    |        |
|          |                                         | R5. 6. 1 ~ R5. 7. 1    | 連続           | R5. 7.14   |           |                |    |   |    |        |
|          | 大熊町 大野                                  | R5. 7. 1 ~ R5. 8. 1    | 連続           | R5. 8.16   |           |                |    |   |    |        |
|          | 八無判 人野                                  | R5. 8. 1 ~ R5. 9. 1    | 連続           | R5. 9.15   |           |                |    |   |    |        |
|          |                                         | R5. 9. 1 ~ R5. 10. 1   | 連続           | R5. 10. 20 |           |                |    |   |    |        |
|          |                                         | R5. 10. 1 ~ R5. 11. 1  | 連続           | R5. 11. 18 |           |                |    |   |    |        |
|          |                                         | R5. 11. 1 ~ R5. 12. 1  | 連続           | R5. 12. 15 |           |                |    |   |    |        |
|          |                                         | R5. 12. 1 ∼ R6. 1. 1   | 連続           | R6. 1.23   |           |                |    |   |    |        |

| 試料名      | 採取地点名         | 採取年月日                  |              |            |           | 測定年月日          |    |   |    |        |
|----------|---------------|------------------------|--------------|------------|-----------|----------------|----|---|----|--------|
| PVH 41   | 11/41/10/1/11 |                        | <b>全α・</b> β | γ          | $^{131}I$ | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|          |               | R5. 4. 1 ~ R5. 5. 1    | 連続           | R5. 5.21   |           |                |    |   |    |        |
|          |               | R5. 5. 1 ∼ R5. 6. 1    | 連続           | R5. 6.21   |           |                |    |   |    |        |
|          |               | R5. 6. 1 ~ R5. 7. 1    | 連続           | R5. 7.19   |           |                |    |   |    |        |
|          |               | R5. 7. 1 ∼ R5. 8. 1    | 連続           | R5. 8.18   |           |                |    |   |    |        |
|          | 大熊町 夫沢        | R5. 8. 1 ∼ R5. 9. 1    | 連続           | R5. 9.15   |           |                |    |   |    |        |
|          |               | R5. 9. 1 ~ R5. 10. 1   | 連続           | R5. 10. 13 |           |                |    |   |    |        |
|          |               | R5. 10. 1 ∼ R5. 11. 1  | 連続           | R5. 11. 18 |           |                |    |   |    |        |
|          |               | R5. 11. 1 ~ R5. 12. 1  | 連続           | R5. 12. 28 |           |                |    |   |    |        |
|          |               | R5. 12. 1 ∼ R6. 1. 1   | 連続           | R6. 1.17   |           |                |    |   |    |        |
|          |               | R5. 4. 1 ∼ R5. 5. 1    | 連続           | R5. 5.28   |           |                |    |   |    |        |
|          |               | R5. 5. 1 ~ R5. 6. 1    | 連続           | R5. 6.18   |           |                |    |   |    |        |
|          |               | R5. 6. 1 ~ R5. 7. 1    | 連続           | R5. 7.21   |           |                |    |   |    |        |
|          |               | R5. 7. 1 ~ R5. 8. 1    | 連続           | R5. 8.18   |           |                |    |   |    |        |
|          | 双葉町 郡山        | R5. 8. 1 ~ R5. 9. 1    | 連続           | R5. 9.25   |           |                |    |   |    |        |
|          |               | R5. 9. 1 ~ R5. 10. 1   | 連続           | R5. 10. 23 |           |                |    |   |    |        |
|          |               | R5. 10. 1 ~ R5. 11. 1  | 連続           | R5. 11. 25 |           |                |    |   |    |        |
|          |               | R5. 11. 1 ~ R5. 12. 1  | 連続           | R5. 12. 21 |           |                |    |   |    |        |
| 大気浮遊じん   |               | R5. 12. 1 ~ R6. 1. 1   | 連続           | R6. 1.23   |           |                |    |   |    |        |
|          |               | R5. 4. 1 ~ R5. 5. 1    | 連続           | R5. 5.21   |           |                |    |   |    |        |
|          |               | R5. 5. 1 ~ R5. 6. 1    | 連続           | R5. 6.18   |           |                |    |   |    |        |
|          |               | R5. 6. 1 ~ R5. 7. 1    | 連続           | R5. 7.22   |           |                |    |   |    |        |
|          |               | R5. 7. 1 ~ R5. 8. 1    | 連続           | R5. 8.16   |           |                |    |   |    |        |
|          | 浪江町 幾世橋       | R5. 8. 1 ~ R5. 9. 1    | 連続           | R5. 9.18   |           |                |    |   |    |        |
|          |               | R5. 9. 1 ~ R5. 10. 1   | 連続           | R5. 10. 14 |           |                |    |   |    |        |
|          |               | R5. 10. 1 ~ R5. 11. 1  | 連続           | R5. 11. 24 |           |                |    |   |    |        |
|          |               | R5. 11. 1 ~ R5. 12. 1  | 連続           | R5. 12. 16 |           |                |    |   |    |        |
|          |               | R5. 12. 1 ~ R6. 1. 1   | 連続           | R6. 1.24   |           |                |    |   |    |        |
|          |               | R5. 4. 1 ~ R5. 5. 1    | 連続           | R5. 5.28   |           |                |    |   |    |        |
|          |               | R5. 5. 1 ~ R5. 6. 1    | 連続           | R5. 6.25   |           |                |    |   |    |        |
|          |               | R5. 6. 1 ~ R5. 7. 1    | 連続           | R5. 7.23   |           |                |    |   |    |        |
|          | 浪江町 大柿ダム      | R5. 7. 1 ~ R5. 8. 1    | 連続           | R5. 8.20   |           |                |    |   |    |        |
|          | 1 / V   P   V | R5. 8. 1 ~ R5. 9. 1    | 連続           | R5. 9.25   |           |                |    |   |    |        |
|          |               | R5. 9. 1 ~ R5. 10. 1   | 連続           | R5. 10. 23 |           |                |    |   |    |        |
|          |               | R5. 10. 1 ~ R5. 11. 1  | 連続           | R5. 11. 24 |           |                |    |   |    |        |
| <u>l</u> |               | R5. 11. 1 ~ R5. 11. 25 | 連続           | R5. 12. 24 |           |                |    |   |    |        |

| 試料名                                     | 採取地点名              | 採取年月日                    |              |            |       | 測定年月日   |    |   |    |        |
|-----------------------------------------|--------------------|--------------------------|--------------|------------|-------|---------|----|---|----|--------|
| PV191711                                | 1.                 | <b>休</b> 取十万 1           | <b>全α・</b> β | γ          | 131 I | $^{3}H$ | Sr | U | Pu | Am, Cm |
|                                         |                    | R5. 4. 1 ~ R5. 5. 1      | 連続           | R5. 5.29   |       |         |    |   |    |        |
|                                         |                    | R5. 5. 1 $\sim$ R5. 6. 1 | 連続           | R5. 6.19   |       |         |    |   |    |        |
|                                         |                    | R5. 6. 1 $\sim$ R5. 7. 1 | 連続           | R5. 7.19   |       |         |    |   |    |        |
|                                         |                    | R5. 7. 1 ∼ R5. 8. 1      | 連続           | R5. 8.22   |       |         |    |   |    |        |
|                                         | 葛尾村 夏湯             | R5. 8. 1 ∼ R5. 9. 1      | 連続           | R5. 9.26   |       |         |    |   |    |        |
|                                         |                    | R5. 9. 1 ~ R5. 10. 1     | 連続           | R5. 10. 23 |       |         |    |   |    |        |
|                                         |                    | R5. 10. 1 ∼ R5. 11. 1    | 連続           | R5. 11. 24 |       |         |    |   |    |        |
|                                         |                    | R5. 11. 1 ~ R5. 12. 1    | 連続           | R5. 12. 24 |       |         |    |   |    |        |
|                                         |                    | R5. 12. 1 ~ R6. 1. 1     | 連続           | R6. 1.24   |       |         |    |   |    |        |
|                                         |                    | R5. 4. 1 ∼ R5. 5. 1      | 連続           | R5. 5.29   |       |         |    |   |    |        |
|                                         |                    | R5. 5. 1 ∼ R5. 6. 1      | 連続           | R5. 6.19   |       |         |    |   |    |        |
|                                         |                    | R5. 6. 1 ∼ R5. 7. 1      | 連続           | R5. 7.24   |       |         |    |   |    |        |
|                                         |                    | R5. 7. 1 ∼ R5. 8. 1      | 連続           | R5. 8.22   |       |         |    |   |    |        |
|                                         | 南相馬市 泉沢            | R5. 8. 1 ∼ R5. 9. 1      | 連続           | R5. 9.26   |       |         |    |   |    |        |
|                                         |                    | R5. 9. 1 ~ R5. 10. 1     | 連続           | R5. 10. 23 |       |         |    |   |    |        |
|                                         |                    | R5. 10. 1 ~ R5. 10. 2    | 連続           | R5. 11. 28 |       |         |    |   |    | _      |
|                                         |                    | R5. 11. 9 ~ R5. 12. 1    | 連続           | R5. 12. 24 |       |         |    |   |    |        |
| 大気浮游じん                                  |                    | R5. 12. 1 ~ R6. 1. 1     | 連続           | R6. 1.25   |       |         |    |   |    | _      |
| , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                    | R5. 4. 1 ~ R5. 5. 1      | 連続           | R5. 5.19   |       |         |    |   |    |        |
|                                         |                    | R5. 5. 1 ~ R5. 6. 1      | 連続           | R5. 6.20   |       |         |    |   |    |        |
|                                         |                    | R5. 6. 1 ~ R5. 7. 1      | 連続           | R5. 7.15   |       |         |    |   |    |        |
|                                         | +10=+ ++>          | R5. 7. 1 ~ R5. 8. 1      | 連続           | R5. 8.18   |       |         |    |   |    |        |
|                                         | 南相馬市 萱浜            | R5. 8. 1 ~ R5. 9. 1      | 連続           | R5. 9.22   |       |         |    |   |    |        |
|                                         |                    | R5. 9. 1 ~ R5. 10. 1     | 連続           | R5. 10. 15 |       |         |    |   |    |        |
|                                         |                    | R5. 10. 1 ~ R5. 11. 1    | 連続           | R5. 11. 24 |       |         |    |   |    |        |
|                                         |                    | R5. 11. 1 ~ R5. 12. 1    | 連続           | R5. 12. 21 |       |         |    |   |    |        |
|                                         |                    | R5. 12. 1 ~ R6. 1. 1     | 連続           | R6. 1.26   |       |         |    |   |    |        |
|                                         |                    | R5. 4. 1 ~ R5. 5. 1      | 連続           | R5. 5.20   |       |         |    |   |    |        |
|                                         |                    | R5. 5. 1 ~ R5. 6. 1      | 連続           | R5. 6.22   |       |         |    |   |    |        |
|                                         |                    | R5. 6. 1 ~ R5. 7. 1      | 連続           | R5. 7.16   |       |         |    |   |    |        |
|                                         | &C V+++ /11 EI VII | R5. 7. 1 ~ R5. 8. 1      | 連続           | R5. 8.19   |       |         |    |   |    |        |
|                                         | 飯舘村 伊丹沢            | R5. 8. 1 ~ R5. 9. 1      | 連続           | R5. 9.23   |       |         |    |   |    |        |
|                                         |                    | R5. 9. 1 ~ R5. 10. 1     | 連続           | R5. 10. 20 |       |         |    |   |    |        |
|                                         |                    | R5. 10. 1 ~ R5. 11. 1    | 連続           | R5. 11. 25 |       |         |    |   |    |        |
|                                         |                    | R5. 11. 1 ~ R5. 12. 1    | 連続           | R5. 12. 22 |       |         |    |   |    |        |
|                                         |                    | R5. 12. 1 ∼ R6. 1. 1     | 連続           | R6. 1.28   |       |         |    |   |    |        |

| 試料名                                           | 採取地点名    | 採取年月日                    |              |            |           | 測定年月日          |    |   |    |        |
|-----------------------------------------------|----------|--------------------------|--------------|------------|-----------|----------------|----|---|----|--------|
| PV/17-721                                     |          |                          | <b>全α・</b> β | γ          | $^{131}I$ | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|                                               |          | R5. 4. 1 ~ R5. 5. 1      | 連続           | R5. 5.19   |           |                |    |   |    |        |
|                                               |          | R5. 5. 1 $\sim$ R5. 6. 1 | 連続           | R5. 6.22   |           |                |    |   |    |        |
|                                               |          | R5. 6. 1 ~ R5. 7. 1      | 連続           | R5. 7.17   |           |                |    |   |    |        |
|                                               |          | R5. 7. 1 ~ R5. 8. 1      | 連続           | R5. 8.20   |           |                |    |   |    |        |
|                                               | 川俣町 山木屋  | R5. 8. 1 ~ R5. 9. 1      | 連続           | R5. 9.24   |           |                |    |   |    |        |
|                                               |          | R5. 9. 1 ∼ R5. 10. 1     | 連続           | R5. 10. 21 |           |                |    |   |    |        |
|                                               |          | R5. 10. 1 ∼ R5. 11. 1    | 連続           | R5. 11. 26 |           |                |    |   |    |        |
|                                               |          | R5. 11. 1 ~ R5. 12. 1    | 連続           | R5. 12. 25 |           |                |    |   |    |        |
|                                               |          | R5. 12. 1 ~ R6. 1. 1     | 連続           | R6. 1.24   |           |                |    |   |    |        |
|                                               |          | R5. 4. 1 ~ R5. 5. 1      |              | R5. 5.15   |           |                |    |   |    |        |
|                                               |          | R5. 5. 1 ~ R5. 6. 1      |              | R5. 6.12   |           |                |    |   |    |        |
|                                               |          | R5. 6. 1 $\sim$ R5. 7. 1 |              | R5. 7.13   |           |                |    |   |    |        |
|                                               |          | R5. 7. 1 ∼ R5. 8. 1      |              | R5. 8.16   |           |                |    |   |    |        |
|                                               | いわき市 久之浜 | R5. 8. 1 ~ R5. 9. 1      |              | R5. 9.16   |           |                |    |   |    |        |
|                                               |          | R5. 9. 1 ∼ R5. 10. 1     |              | R5. 10. 12 |           |                |    |   |    |        |
|                                               |          | R5. 10. 1 ∼ R5. 11. 1    |              | R5. 11. 18 |           |                |    |   |    |        |
|                                               |          | R5. 11. 1 ∼ R5. 12. 1    |              | R5. 12. 11 |           |                |    |   |    |        |
| 大気浮游じん                                        |          | R5. 12. 1 ∼ R6. 1. 1     |              | R6. 1.15   |           |                |    |   |    |        |
| , , , , , , , <u>, , , , , , , , , , , , </u> |          | R5. 4. 1 ~ R5. 5. 1      |              | R5. 5.16   |           |                |    |   |    |        |
|                                               |          | R5. 5. 1 ∼ R5. 6. 1      |              | R5. 6.12   |           |                |    |   |    |        |
|                                               |          | R5. 6. 1 ~ R5. 7. 1      |              | R5. 7.14   |           |                |    |   |    |        |
|                                               |          | R5. 7. 1 ∼ R5. 8. 1      |              | R5. 8.17   |           |                |    |   |    |        |
|                                               | いわき市 下桶売 | R5. 8. 1 ∼ R5. 9. 1      |              | R5. 9.17   |           |                |    |   |    |        |
|                                               |          | R5. 9. 1 ∼ R5. 10. 1     |              | R5. 10. 12 |           |                |    |   |    |        |
|                                               |          | R5. 10. 1 ~ R5. 11. 1    |              | R5. 11. 19 |           |                |    |   |    |        |
|                                               |          | R5. 11. 1 ∼ R5. 12. 1    |              | R5. 12. 11 |           |                |    |   |    |        |
|                                               |          | R5. 12. 1 ~ R6. 1. 1     |              | R6. 1.15   |           |                |    |   |    |        |
|                                               |          | R5. 4. 1 ~ R5. 5. 1      |              | R5. 5.17   |           |                |    |   |    |        |
|                                               |          | R5. 5. 1 ~ R5. 6. 1      |              | R5. 6.13   |           |                |    |   |    |        |
|                                               |          | R5. 6. 1 ∼ R5. 7. 1      |              | R5. 7.14   |           |                |    |   |    |        |
|                                               |          | R5. 7. 1 ∼ R5. 8. 1      |              | R5. 8.17   |           |                |    |   |    |        |
|                                               | いわき市 川前  | R5. 8. 1 ∼ R5. 9. 1      |              | R5. 9.18   |           |                |    |   |    |        |
|                                               |          | R5. 9. 1 ∼ R5. 10. 1     |              | R5. 10. 12 |           |                |    |   |    |        |
|                                               |          | R5. 10. 1 ∼ R5. 11. 1    |              | R5. 11. 20 |           |                |    |   |    |        |
|                                               |          | R5. 11. 1 ~ R5. 12. 1    |              | R5. 12. 11 |           |                |    |   |    |        |
|                                               |          | R5. 12. 1 ∼ R6. 1. 1     |              | R6. 1.16   |           |                |    |   |    |        |

| 試料名    | 採取地点名            | 採取年月日                    |              |            |           | 測定年月日          |    |   |    |        |
|--------|------------------|--------------------------|--------------|------------|-----------|----------------|----|---|----|--------|
| 武作石    | 休取地点有            |                          | <b>全α・</b> β | γ          | $^{131}I$ | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|        |                  | R5. 4. 1 ~ R5. 5. 1      |              | R5. 5.12   |           |                |    |   |    |        |
|        |                  | R5. 5. 1 $\sim$ R5. 6. 1 |              | R5. 6. 8   |           |                |    |   |    |        |
|        |                  | R5. 6. 1 $\sim$ R5. 7. 1 |              | R5. 7.10   |           |                |    |   |    |        |
|        |                  | R5. 7. 1 ∼ R5. 8. 1      |              | R5. 8.10   |           |                |    |   |    |        |
|        | 大熊町 向畑           | R5. 8. 1 ∼ R5. 9. 1      |              | R5. 9.11   |           |                |    |   |    |        |
|        |                  | R5. 9. 1 ∼ R5. 10. 1     |              | R5. 10. 10 |           |                |    |   |    |        |
|        |                  | R5. 10. 1 ∼ R5. 11. 1    |              | R5. 11. 17 |           |                |    |   |    |        |
|        |                  | R5. 11. 1 ~ R5. 12. 1    |              | R5. 12. 12 |           |                |    |   |    |        |
|        |                  | R5. 12. 1 ∼ R6. 1. 1     |              | R6. 1.16   |           |                |    |   |    |        |
|        |                  | R5. 4. 1 ∼ R5. 5. 1      |              | R5. 5.13   |           |                |    |   |    |        |
|        |                  | R5. 5. 1 ∼ R5. 6. 1      |              | R5. 6. 8   |           |                |    |   |    |        |
|        |                  | R5. 6. 1 ~ R5. 7. 1      |              | R5. 7.11   |           |                |    |   |    |        |
|        |                  | R5. 7. 1 ∼ R5. 8. 1      |              | R5. 8.11   |           |                |    |   |    |        |
|        | 双葉町 山田           | R5. 8. 1 ~ R5. 9. 1      |              | R5. 9.11   |           |                |    |   |    |        |
|        |                  | R5. 9. 1 ~ R5. 10. 1     |              | R5. 10. 10 |           |                |    |   |    |        |
|        |                  | R5. 10. 1 ~ R5. 11. 1    |              | R5. 11. 17 |           |                |    |   |    |        |
|        |                  | R5. 11. 1 ~ R5. 12. 1    |              | R5. 12. 12 |           |                |    |   |    |        |
| 大気浮游じん |                  | R5. 12. 1 ~ R6. 1. 1     |              | R6. 1.17   |           |                |    |   |    |        |
|        |                  | R5. 4. 1 ~ R5. 5. 1      |              | R5. 5.14   |           |                |    |   |    |        |
|        |                  | R5. 5. 1 ~ R5. 6. 1      |              | R5. 6. 9   |           |                |    |   |    |        |
|        |                  | R5. 6. 1 ~ R5. 7. 1      |              | R5. 7.12   |           |                |    |   |    |        |
|        | 77 # m + # . i . | R5. 7. 1 ~ R5. 8. 1      |              | R5. 8.12   |           |                |    |   |    |        |
|        | 双葉町 新山           | R5. 8. 1 ~ R5. 9. 1      |              | R5. 9.12   |           |                |    |   |    |        |
|        |                  | R5. 9. 1 ~ R5. 10. 1     |              | R5. 10. 10 |           |                |    |   |    |        |
|        |                  | R5. 10. 1 ~ R5. 11. 1    |              | R5. 11. 18 |           |                |    |   |    |        |
|        |                  | R5. 11. 1 ~ R5. 12. 1    |              | R5. 12. 13 |           |                |    |   |    |        |
|        |                  | R5. 12. 1 ~ R6. 1. 1     |              | R6. 1.17   |           |                |    |   |    |        |
|        |                  | R5. 4. 1 ~ R5. 5. 1      |              | R5. 5.12   |           |                |    |   |    |        |
|        |                  | R5. 5. 1 ~ R5. 6. 1      |              | R5. 6.10   |           |                |    |   |    |        |
|        |                  | R5. 6. 1 ~ R5. 7. 1      |              | R5. 7.12   |           |                |    |   |    |        |
|        | 777 英元 1 777 白   | R5. 7. 1 ~ R5. 8. 1      |              | R5. 8.16   |           |                |    |   |    |        |
|        | 双葉町 上羽鳥          | R5. 8. 1 ~ R5. 9. 1      |              | R5. 9.13   |           |                |    |   |    |        |
|        |                  | R5. 9. 1 ~ R5. 10. 1     |              | R5. 10. 11 |           |                |    |   |    |        |
|        |                  | R5. 10. 1 ~ R5. 11. 1    |              | R5. 11. 19 |           |                |    |   |    |        |
|        |                  | R5. 11. 1 ~ R5. 12. 1    |              | R5. 12. 13 |           |                |    |   |    |        |
|        |                  | R5. 12. 1 ∼ R6. 1. 1     |              | R6. 1.17   |           |                |    |   |    |        |

| 試料名    | 採取地点名            | 採取年月日                 |              |            |           | 測定年月日          |    |   |    | _      |
|--------|------------------|-----------------------|--------------|------------|-----------|----------------|----|---|----|--------|
| PV1112 | 1.4.4.4          |                       | <b>全α・</b> β | γ          | $^{131}I$ | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|        |                  | R5. 4. 1 ∼ R5. 5. 1   |              | R5. 5.13   |           |                |    |   |    |        |
|        |                  | R5. 5. 1 ∼ R5. 6. 1   |              | R5. 6.11   |           |                |    |   |    |        |
|        |                  | R5. 6. 1 ~ R5. 7. 1   |              | R5. 7.13   |           |                |    |   |    |        |
|        |                  | R5. 7. 1 ∼ R5. 8. 1   |              | R5. 8.17   |           |                |    |   |    |        |
|        | 浪江町 南津島          | R5. 8. 1 ∼ R5. 9. 1   |              | R5. 9.14   |           |                |    |   |    |        |
|        |                  | R5. 9. 1 ∼ R5. 10. 1  |              | R5. 10. 11 |           |                |    |   |    |        |
|        |                  | R5. 10. 1 ~ R5. 11. 1 |              | R5. 11. 19 |           |                |    |   |    |        |
|        |                  | R5. 11. 1 ∼ R5. 12. 1 |              | R5. 12. 14 |           |                |    |   |    |        |
|        |                  | R5. 12. 1 ∼ R6. 1. 1  |              | R6. 1.18   |           |                |    |   |    |        |
|        |                  | R5. 4. 1 ~ R5. 5. 1   |              | R5. 5.14   |           |                |    |   |    |        |
|        |                  | R5. 5. 1 ~ R5. 6. 1   |              | R5. 6. 9   |           |                |    |   |    |        |
|        |                  | R5. 6. 1 ~ R5. 7. 1   |              | R5. 7.13   |           |                |    |   |    |        |
|        |                  | R5. 7. 1 ∼ R5. 8. 1   |              | R5. 8.18   |           |                |    |   |    |        |
|        | 南相馬市 横川ダム        | R5. 8. 1 ~ R5. 9. 1   |              | R5. 9.15   |           |                |    |   |    |        |
|        |                  | R5. 9. 1 ∼ R5. 10. 1  |              | R5. 10. 11 |           |                |    |   |    |        |
|        |                  | R5. 10. 1 ~ R5. 11. 1 |              | R5. 11. 20 |           |                |    |   |    |        |
|        |                  | R5. 11. 1 ∼ R5. 12. 1 |              | R5. 12. 14 |           |                |    |   |    |        |
| 大気浮游じん |                  | R5. 12. 1 ~ R6. 1. 1  |              | R6. 1.18   |           |                |    |   |    |        |
|        |                  | R5. 4. 3 ~ R5. 5. 1   |              | R5. 5. 2   |           |                |    |   |    |        |
|        |                  | R5. 5. 1 ~ R5. 6. 1   |              | R5. 6. 5   |           |                |    |   |    |        |
|        |                  | R5. 6. 1 ~ R5. 7. 3   |              | R5. 7. 8   |           |                |    |   |    |        |
|        | . Lamana         | R5. 7. 3 ~ R5. 8. 1   |              | R5. 8. 2   |           |                |    |   |    |        |
|        | 広野町 二ツ沼          | R5. 8. 1 ~ R5. 9. 1   |              | R5. 9. 11  |           |                |    |   |    |        |
|        |                  | R5. 9. 1 ∼ R5. 10. 2  |              | R5. 10. 3  |           |                |    |   |    |        |
|        |                  | R5. 10. 2 ~ R5. 11. 1 |              | R5. 11. 2  |           |                |    |   |    |        |
|        |                  | R5. 11. 1 ~ R5. 12. 1 |              | R5. 12. 4  |           |                |    |   |    |        |
|        |                  | R5. 12. 1 ~ R6. 1. 4  |              | R6. 1. 5   |           |                |    |   |    |        |
|        |                  | R5. 4. 3 ∼ R5. 5. 1   |              | R5. 5. 3   |           |                |    |   |    |        |
|        |                  | R5. 5. 1 ∼ R5. 6. 1   |              | R5. 6. 6   |           |                |    |   |    |        |
|        |                  | R5. 6. 1 ∼ R5. 7. 3   |              | R5. 7. 9   |           |                |    |   |    |        |
|        | 1/\_ <del></del> | R5. 7. 3 ∼ R5. 8. 1   |              | R5. 8. 4   |           |                |    |   |    |        |
|        | 楢葉町 山田岡          | R5. 8. 1 ~ R5. 9. 1   |              | R5. 9. 4   |           |                |    |   |    |        |
|        |                  | R5. 9. 1 ∼ R5. 10. 2  |              | R5. 10. 4  |           |                |    |   |    |        |
|        |                  | R5. 10. 2 ~ R5. 11. 1 |              | R5. 11. 3  |           |                |    |   |    |        |
|        |                  | R5. 11. 1 ∼ R5. 12. 1 |              | R5. 12. 5  |           |                |    |   |    |        |
|        |                  | R5. 12. 1 ∼ R6. 1. 4  |              | R6. 1. 6   |           |                |    |   |    |        |

| 試料名                                     | 採取地点名            | 採取年月日                    |              |           |                  | 測定年月日          |    |   |    |        |
|-----------------------------------------|------------------|--------------------------|--------------|-----------|------------------|----------------|----|---|----|--------|
| 政府有                                     | 休取地点名            | 採取午月日                    | <b>全α・</b> β | γ         | <sup>131</sup> I | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|                                         |                  | R5. 4. 3 $\sim$ R5. 5. 1 |              | R5. 5. 4  |                  |                |    |   |    |        |
|                                         |                  | R5. 5. 1 $\sim$ R5. 6. 1 |              | R5. 6. 7  |                  |                |    |   |    |        |
|                                         |                  | R5. 6. 1 $\sim$ R5. 7. 3 |              | R5. 7.10  |                  |                |    |   |    |        |
|                                         |                  | R5. 7. 3 ∼ R5. 8. 1      |              | R5. 8. 5  |                  |                |    |   |    |        |
|                                         | 楢葉町 松館           | R5. 8. 1 ~ R5. 9. 1      |              | R5. 9. 5  |                  |                |    |   |    |        |
|                                         |                  | R5. 9. 1 ∼ R5. 10. 2     |              | R5. 10. 5 |                  |                |    |   |    |        |
|                                         |                  | R5. 10. 2 ∼ R5. 11. 1    |              | R5.11.4   |                  |                |    |   |    |        |
|                                         |                  | R5. 11. 1 ∼ R5. 12. 1    |              | R5. 12. 6 |                  |                |    |   |    |        |
|                                         |                  | R5. 12. 1 ∼ R6. 1. 4     |              | R6. 1. 7  |                  |                |    |   |    |        |
|                                         |                  | R5. 4. 3 ∼ R5. 5. 1      |              | R5. 5. 5  |                  |                |    |   |    |        |
|                                         |                  | R5. 5. 1 ∼ R5. 6. 1      |              | R5. 6. 8  |                  |                |    |   |    |        |
|                                         |                  | R5. 6. 1 ∼ R5. 7. 3      |              | R5. 7.11  |                  |                |    |   |    |        |
|                                         |                  | R5. 7. 3 ∼ R5. 8. 1      |              | R5. 8. 6  |                  |                |    |   |    |        |
|                                         | 楢葉町 波倉           | R5. 8. 1 ∼ R5. 9. 1      |              | R5. 9. 6  |                  |                |    |   |    |        |
|                                         |                  | R5. 9. 1 ∼ R5. 10. 2     |              | R5. 10. 6 |                  |                |    |   |    |        |
|                                         |                  | R5. 10. 2 ~ R5. 11. 1    |              | R5.11.5   |                  |                |    |   |    |        |
|                                         |                  | R5. 11. 1 ∼ R5. 12. 1    |              | R5. 12. 7 |                  |                |    |   |    |        |
| 大気浮游じん                                  |                  | R5. 12. 1 ~ R6. 1. 4     |              | R6. 1. 8  |                  |                |    |   |    |        |
| , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                  | R5. 4. 3 ~ R5. 5. 1      |              | R5. 5. 6  |                  |                |    |   |    |        |
|                                         |                  | R5. 5. 1 ~ R5. 6. 1      |              | R5. 6. 9  |                  |                |    |   |    |        |
|                                         |                  | R5. 6. 1 ~ R5. 7. 3      |              | R5. 7.12  |                  |                |    |   |    |        |
|                                         | character 1 mg l | R5. 7. 3 ~ R5. 8. 1      |              | R5. 8. 7  |                  |                |    |   |    |        |
|                                         | 富岡町 上郡山          | R5. 8. 1 ~ R5. 9. 1      |              | R5. 9. 7  |                  |                |    |   |    |        |
|                                         |                  | R5. 9. 1 ~ R5. 10. 2     |              | R5. 10. 7 |                  |                |    |   |    |        |
|                                         |                  | R5. 10. 2 ~ R5. 11. 1    |              | R5. 11. 6 |                  |                |    |   |    |        |
|                                         |                  | R5. 11. 1 ~ R5. 12. 1    |              | R5. 12. 8 |                  |                |    |   |    |        |
|                                         |                  | R5. 12. 1 ~ R6. 1. 4     |              | R6. 1. 9  |                  |                |    |   |    |        |
|                                         |                  | R5. 4. 3 ~ R5. 5. 1      |              | R5. 5. 7  |                  |                |    |   |    |        |
|                                         |                  | R5. 5. 1 ~ R5. 6. 1      |              | R5. 6.10  |                  |                |    |   |    |        |
|                                         |                  | R5. 6. 1 ~ R5. 7. 3      |              | R5. 7.13  |                  |                |    |   |    |        |
|                                         |                  | R5. 7. 3 ~ R5. 8. 1      |              | R5. 8. 8  |                  |                |    |   |    |        |
|                                         | 富岡町 下郡山          | R5. 8. 1 ~ R5. 9. 1      |              | R5. 9. 8  |                  |                |    |   |    |        |
|                                         |                  | R5. 9. 1 ~ R5. 10. 2     |              | R5. 10. 8 |                  |                |    |   |    |        |
|                                         |                  | R5. 10. 2 ~ R5. 11. 1    |              | R5. 11. 7 |                  |                |    |   |    |        |
|                                         |                  | R5. 11. 1 ~ R5. 12. 1    |              | R5. 12. 9 |                  |                |    |   |    |        |
|                                         |                  | R5. 12. 1 ∼ R6. 1. 4     |              | R6. 1.10  |                  |                |    |   |    |        |

| 試料名     | 採取地点名       | 松斯年日日                                                |              |                        |           | 測定年月日          |    |   |    |        |
|---------|-------------|------------------------------------------------------|--------------|------------------------|-----------|----------------|----|---|----|--------|
| <b></b> | 採取地点名       | 採取年月日                                                | <b>全α・</b> β | γ                      | $^{131}I$ | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|         |             | R5. 4. 3 ~ R5. 5. 1                                  |              | R5. 5. 8               |           |                |    |   |    |        |
|         |             | R5. 5. 1 $\sim$ R5. 6. 1                             |              | R5. 6.11               |           |                |    |   |    |        |
|         |             | R5. 6. 1 $\sim$ R5. 7. 3                             |              | R5. 7.14               |           |                |    |   |    |        |
|         |             | R5. 7. 3 ∼ R5. 8. 1                                  |              | R5. 8. 9               |           |                |    |   |    |        |
|         | 富岡町 夜の森     | R5. 8. 1 ∼ R5. 9. 1                                  |              | R5. 9.12               |           |                |    |   |    |        |
|         |             | R5. 9. 1 ~ R5. 10. 2                                 |              | R5. 10. 9              |           |                |    |   |    |        |
|         |             | R5. 10. 2 ~ R5. 11. 1                                |              | R5. 11. 8              |           |                |    |   |    |        |
|         |             | R5. 11. 1 ~ R5. 12. 1                                |              | R5. 12. 10             |           |                |    |   |    |        |
|         |             | R5. 12. 1 ~ R6. 1. 4                                 |              | R6. 1.11               |           |                |    |   |    |        |
|         |             | R5. 4. 3 ~ R5. 5. 1                                  |              | R5. 5. 9               |           |                |    |   |    |        |
|         |             | R5. 5. 1 ~ R5. 6. 1                                  |              | R5. 6.12               |           |                |    |   |    |        |
|         |             | R5. 6. 1 ~ R5. 7. 3                                  |              | R5. 7.15               |           |                |    |   |    |        |
|         | LAKING # /s | R5. 7. 3 ~ R5. 8. 1                                  |              | R5. 8.12               |           |                |    |   |    |        |
|         | 大熊町 南台      | R5. 8. 1 ~ R5. 9. 1                                  |              | R5. 9. 9               |           |                |    |   |    |        |
|         |             | R5. 9. 1 ~ R5. 10. 2                                 |              | R5. 10. 10             |           |                |    |   |    |        |
|         |             | R5. 10. 2 ~ R5. 11. 1                                |              | R5. 11. 9              |           |                |    |   |    |        |
|         |             | R5. 11. 1 ~ R5. 12. 1                                |              | R5. 12. 11             |           |                |    |   |    |        |
| 大気浮遊じん  |             | R5. 12. 1 ~ R6. 1. 4                                 |              | R6. 1.12               |           |                |    |   |    |        |
|         |             | R5. 4. 3 ~ R5. 5. 1<br>R5. 5. 1 ~ R5. 6. 1           |              | R5. 5. 10<br>R5. 6. 13 |           |                |    |   |    |        |
|         |             | R5. 5. 1 $\sim$ R5. 6. 1<br>R5. 6. 1 $\sim$ R5. 7. 3 |              | R5. 7.16               |           |                |    |   |    |        |
|         |             | R5. 7. 3 ~ R5. 8. 1                                  |              | R5. 8. 13              |           |                |    |   |    |        |
|         | 浪江町 浪江      | R5. 8. 1 ~ R5. 9. 1                                  |              | R5. 9.10               |           |                |    |   |    |        |
|         | 1以江州 1以江    | R5. 9. 1 ~ R5. 10. 2                                 |              | R5. 10. 11             |           |                |    |   |    |        |
|         |             | R5. 10. 2 ~ R5. 11. 1                                |              | R5. 11. 10             |           |                |    |   |    |        |
|         |             | R5. 11. 1 ~ R5. 12. 1                                |              | R5. 12. 12             |           |                |    |   |    |        |
|         |             | R5. 12. 1 ~ R6. 1. 4                                 |              | R6. 1.13               |           |                |    |   |    |        |
|         |             | R5. 4. 3 ~ R5. 5. 1                                  |              | R5. 5. 3               |           |                |    |   |    |        |
|         |             | R5. 5. 1 ~ R5. 6. 1                                  |              | R5. 6. 2               |           |                | _  |   |    |        |
|         |             | R5. 6. 1 ~ R5. 7. 3                                  |              | R5. 7. 5               |           |                |    |   |    |        |
|         |             | R5. 7. 3 ~ R5. 8. 1                                  |              | R5. 8. 3               |           |                | _  |   |    |        |
|         | 田村市 滝根      | R5. 8. 1 ~ R5. 9. 1                                  |              | R5. 9. 7               |           |                |    |   |    |        |
|         |             | R5. 9. 1 ~ R5. 10. 2                                 |              | R5. 10. 5              |           |                | _  |   |    |        |
|         |             | R5. 10. 2 ~ R5. 11. 1                                |              | R5. 11. 3              |           |                | _  |   |    |        |
|         |             | R5. 11. 1 ~ R5. 12. 1                                |              | R5. 12. 5              |           |                |    |   |    |        |
|         |             | R5. 12. 1 ~ R6. 1. 4                                 |              | R6. 1. 5               |           |                |    |   |    |        |

| 試料名    | 採取地点名             | 採取年月日                    |              |           |                  | 測定年月日          |    |   |    |        |
|--------|-------------------|--------------------------|--------------|-----------|------------------|----------------|----|---|----|--------|
| 武作石    | 休取地点有             | 採取平月日                    | <b>全α・</b> β | γ         | <sup>131</sup> I | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|        |                   | R5. 4. 3 ∼ R5. 5. 1      |              | R5. 5. 4  |                  |                |    |   |    |        |
|        |                   | R5. 5. 1 $\sim$ R5. 6. 1 |              | R5. 6. 3  |                  |                |    |   |    |        |
|        |                   | R5. 6. 1 $\sim$ R5. 7. 3 |              | R5. 7. 5  |                  |                |    |   |    |        |
|        |                   | R5. 7. 3 ∼ R5. 8. 1      |              | R5. 8. 3  |                  |                |    |   |    |        |
|        | 田村市 船引            | R5. 8. 1 ∼ R5. 9. 1      |              | R5. 9. 7  |                  |                |    |   |    |        |
|        |                   | R5. 9. 1 ~ R5. 10. 2     |              | R5. 10. 8 |                  |                |    |   |    |        |
|        |                   | R5. 10. 2 ~ R5. 11. 1    |              | R5. 11. 4 |                  |                |    |   |    |        |
|        |                   | R5. 11. 1 ~ R5. 12. 1    |              | R5. 12. 6 |                  |                |    |   |    |        |
|        |                   | R5. 12. 1 ~ R6. 1. 4     |              | R6. 1. 6  |                  |                |    |   |    |        |
|        |                   | R5. 4. 3 ∼ R5. 5. 1      |              | R5. 5. 5  |                  |                |    |   |    |        |
|        |                   | R5. 5. 1 ~ R5. 6. 1      |              | R5. 6. 4  |                  |                |    |   |    |        |
|        |                   | R5. 6. 1 ~ R5. 7. 3      |              | R5. 7. 5  |                  |                |    |   |    |        |
|        |                   | R5. 7. 3 ∼ R5. 8. 1      |              | R5. 8. 4  |                  |                |    |   |    |        |
|        | 田村市 上移            | R5. 8. 1 ~ R5. 9. 1      |              | R5. 9. 7  |                  |                |    |   |    |        |
|        |                   | R5. 9. 1 ~ R5. 10. 2     |              | R5. 10. 6 |                  |                |    |   |    |        |
|        |                   | R5. 10. 2 ~ R5. 11. 1    |              | R5. 11. 5 |                  |                |    |   |    |        |
|        |                   | R5. 11. 1 ~ R5. 12. 1    |              | R5. 12. 6 |                  |                |    |   |    |        |
| 大気浮游じん |                   | R5. 12. 1 ~ R6. 1. 4     |              | R6. 1. 7  |                  |                |    |   |    |        |
|        |                   | R5. 4. 3 ~ R5. 5. 1      |              | R5. 5. 6  |                  |                |    |   |    |        |
|        |                   | R5. 5. 1 ~ R5. 6. 1      |              | R5. 6. 2  |                  |                |    |   |    |        |
|        |                   | R5. 6. 1 ~ R5. 7. 3      |              | R5. 7. 5  |                  |                |    |   |    |        |
|        | 11134344 1 111345 | R5. 7. 3 ~ R5. 8. 1      |              | R5. 8. 5  |                  |                |    |   |    |        |
|        | 川内村 上川内           | R5. 8. 1 ~ R5. 9. 1      |              | R5. 9. 8  |                  |                |    |   |    |        |
|        |                   | R5. 9. 1 ~ R5. 10. 2     |              | R5. 10. 6 |                  |                |    |   |    |        |
|        |                   | R5. 10. 2 ~ R5. 11. 1    |              | R5. 11. 3 |                  |                |    |   |    |        |
|        |                   | R5. 11. 1 ~ R5. 12. 1    |              | R5. 12. 7 |                  |                |    |   |    |        |
|        |                   | R5. 12. 1 ~ R6. 1. 4     |              | R6. 1. 5  |                  |                |    |   |    |        |
|        |                   | R5. 4. 3 ~ R5. 5. 1      |              | R5. 5. 7  |                  |                |    |   |    |        |
|        |                   | R5. 5. 1 ~ R5. 6. 1      |              | R5. 6. 2  |                  |                |    |   |    |        |
|        |                   | R5. 6. 1 ~ R5. 7. 3      |              | R5. 7. 7  |                  |                |    |   |    |        |
|        | +10 F + F II      | R5. 7. 3 ~ R5. 8. 1      |              | R5. 8. 6  |                  |                |    |   |    |        |
|        | 南相馬市 馬場           | R5. 8. 1 ~ R5. 9. 1      |              | R5. 9. 9  |                  |                |    |   |    |        |
|        |                   | R5. 9. 1 ~ R5. 10. 2     |              | R5. 10. 7 |                  |                |    |   |    |        |
|        |                   | R5. 10. 2 ~ R5. 11. 1    |              | R5. 11. 3 |                  |                |    |   |    |        |
|        |                   | R5. 11. 1 ~ R5. 12. 1    |              | R5. 12. 7 |                  |                |    |   |    |        |
|        |                   | R5. 12. 1 ∼ R6. 1. 4     |              | R6. 1. 5  |                  |                |    |   |    |        |

| 試料名                                     | 採取地点名     | 採取年月日                    |              |            |           | 測定年月日          |    |   |    |        |
|-----------------------------------------|-----------|--------------------------|--------------|------------|-----------|----------------|----|---|----|--------|
| P41141                                  | 1444世杰有   |                          | <b>全α・</b> β | γ          | $^{131}I$ | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|                                         |           | R5. 4. 3 ~ R5. 5. 1      |              | R5. 5. 4   |           |                |    |   |    |        |
|                                         |           | R5. 5. 1 $\sim$ R5. 6. 1 |              | R5. 6. 4   |           |                |    |   |    |        |
|                                         |           | R5. 6. 1 $\sim$ R5. 7. 3 |              | R5. 7. 7   |           |                |    |   |    |        |
|                                         |           | R5. 7. 3 ~ R5. 8. 1      |              | R5. 8. 4   |           |                |    |   |    |        |
|                                         | 南相馬市 大木戸  | R5. 8. 1 ~ R5. 9. 1      |              | R5. 9. 8   |           |                |    |   |    |        |
|                                         |           | R5. 9. 1 ∼ R5. 10. 2     |              | R5. 10. 8  |           |                |    |   |    |        |
|                                         |           | R5. 10. 2 ~ R5. 11. 1    |              | R5. 11. 4  |           |                |    |   |    |        |
|                                         |           | R5. 11. 1 ∼ R5. 12. 1    |              | R5. 12. 8  |           |                |    |   |    |        |
|                                         |           | R5. 12. 1 ~ R6. 1. 4     |              | R6. 1. 6   |           |                |    |   |    |        |
|                                         |           | R5. 4. 3 ~ R5. 5. 1      |              | R5. 5. 4   |           |                |    |   |    |        |
|                                         |           | R5. 5. 1 ~ R5. 6. 1      |              | R5. 6. 4   |           |                |    |   |    |        |
|                                         |           | R5. 6. 1 ∼ R5. 7. 3      |              | R5. 7. 7   |           |                |    |   |    |        |
|                                         |           | R5. 7. 3 ~ R5. 8. 1      |              | R5. 8. 4   |           |                |    |   |    |        |
|                                         | 南相馬市 橲原   | R5. 8. 1 ~ R5. 9. 1      |              | R5. 9. 9   |           |                |    |   |    |        |
|                                         |           | R5. 9. 1 ~ R5. 10. 2     |              | R5. 10. 9  |           |                |    |   |    |        |
|                                         |           | R5. 10. 2 ~ R5. 11. 1    |              | R5. 11. 4  |           |                |    |   |    |        |
|                                         |           | R5. 11. 1 ~ R5. 12. 1    |              | R5. 12. 8  |           |                |    |   |    |        |
| 大気浮游じん                                  |           | R5. 12. 1 ~ R6. 1. 4     |              | R6. 1. 7   |           |                |    |   |    |        |
| ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( |           | R5. 4. 5 ∼ R5. 4. 6      |              | R5. 4. 10  |           |                |    |   |    |        |
|                                         |           | R5. 5. 9 ~ R5. 5. 10     |              | R5. 5. 23  |           |                |    |   |    |        |
|                                         |           | R5. 6. 6 ~ R5. 6. 7      |              | R5. 6. 19  |           |                |    |   |    |        |
|                                         |           | R5. 7. 6 ∼ R5. 7. 7      |              | R5. 7. 21  |           |                |    |   |    |        |
|                                         | 福島市 方木田   | R5. 8. 7 ∼ R5. 8. 8      |              | R5. 8. 29  |           |                |    |   |    |        |
|                                         |           | R5. 9. 12 ∼ R5. 9. 13    |              | R5. 9. 14  |           |                |    |   |    |        |
|                                         |           | R5. 10. 12 ~ R5. 10. 13  |              | R5. 10. 25 |           |                |    |   |    |        |
|                                         |           | R5. 11. 8 ∼ R5. 11. 9    |              | R5. 11. 29 |           |                |    |   |    |        |
|                                         |           | R5. 12. 5 ∼ R5. 12. 6    |              | R5. 12. 15 |           |                |    |   |    |        |
|                                         |           | R5. 4. 4 ~ R5. 4. 5      |              | R5. 4.10   |           |                |    |   |    |        |
|                                         |           | R5. 5. 8 ~ R5. 5. 9      |              | R5. 5.18   |           |                |    |   |    |        |
|                                         |           | R5. 6. 1 ∼ R5. 6. 2      |              | R5. 6.12   |           |                |    |   |    |        |
|                                         |           | R5. 7. 3 $\sim$ R5. 7. 4 |              | R5. 7.18   |           |                |    |   |    |        |
|                                         | 会津若松市 追手町 | R5. 8. 1 ~ R5. 8. 2      |              | R5. 8. 8   |           |                |    |   |    |        |
|                                         |           | R5. 9. 4 ~ R5. 9. 5      |              | R5. 9.13   |           |                |    |   |    |        |
|                                         |           | R5. 10. 2 ~ R5. 10. 3    |              | R5. 10. 11 |           |                |    |   |    |        |
|                                         |           | R5. 11. 1 ~ R5. 11. 2    |              | R5. 11. 15 |           |                |    |   |    |        |
|                                         |           | R5. 12. 4 ~ R5. 12. 5    |              | R5. 12. 12 |           |                |    |   |    |        |

| 試料名     | 採取地点名          | 採取年月日                                                    |              |                      |                  | 測定年月日          |    |   |    |        |
|---------|----------------|----------------------------------------------------------|--------------|----------------------|------------------|----------------|----|---|----|--------|
| <b></b> | 休取地点名          | 採取平月日                                                    | <b>全α・</b> β | γ                    | <sup>131</sup> I | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|         |                | R5. 4. 6 ~ R5. 4. 7                                      |              | R5. 4.12             |                  |                |    |   |    |        |
|         |                | R5. 5.10 ∼ R5. 5.11                                      |              | R5. 5.29             |                  |                |    |   |    |        |
|         |                | R5. 6. 5 ∼ R5. 6. 6                                      |              | R5. 6.14             |                  |                |    |   |    |        |
|         |                | R5. 7. 5 ∼ R5. 7. 6                                      |              | R5. 7.18             |                  |                |    |   |    |        |
|         | 郡山市 麓山         | R5. 8. 3 ∼ R5. 8. 4                                      |              | R5. 8. 9             |                  |                |    |   |    |        |
|         |                | R5. 9. 6 ~ R5. 9. 7                                      |              | R5. 9.14             |                  |                |    |   |    |        |
|         |                | R5. 10. 4 ~ R5. 10. 5                                    |              | R5. 10. 12           |                  |                |    |   |    |        |
|         |                | R5. 11. 6 ~ R5. 11. 7                                    |              | R5. 11. 15           |                  |                |    |   |    |        |
|         |                | R5. 12. 6 ~ R5. 12. 7                                    |              | R5. 12. 12           |                  |                |    |   |    |        |
|         |                | R5. 4. 4 ~ R5. 4. 5                                      |              | R5. 4.10             |                  |                |    |   |    |        |
|         |                | R5. 5. 8 ~ R5. 5. 9                                      |              | R5. 5.17             |                  |                |    |   |    |        |
|         |                | R5. 6. 1 ~ R5. 6. 2                                      |              | R5. 6.12             |                  |                |    |   |    |        |
|         | / /: ===== m : | R5. 7. 3 ~ R5. 7. 4                                      |              | R5. 7.19             |                  |                |    |   |    |        |
|         | 白河市 昭和町        | R5. 8. 1 ~ R5. 8. 2                                      |              | R5. 8. 7             |                  |                |    |   |    |        |
|         |                | R5. 9. 4 ~ R5. 9. 5                                      |              | R5. 9.12             |                  |                |    |   |    |        |
|         |                | R5. 10. 2 ~ R5. 10. 3                                    |              | R5. 10. 17           |                  |                |    |   |    |        |
|         |                | R5. 11. 1 ~ R5. 11. 2                                    |              | R5. 11. 17           |                  |                |    |   |    |        |
| 大気浮遊じん  |                | R5. 12. 4 ~ R5. 12. 5                                    |              | R5. 12. 13           |                  |                |    |   |    |        |
|         |                | R5. 4. 6 ~ R5. 4. 7                                      |              | R5. 4.11             |                  |                |    |   |    |        |
|         |                | R5. 5. 10 ~ R5. 5. 11                                    |              | R5. 5.18             |                  |                |    |   |    |        |
|         |                | R5. 6. 5 ~ R5. 6. 6                                      |              | R5. 6.13             |                  |                |    |   |    |        |
|         | 相馬市 玉野         | R5. 7. 5 ~ R5. 7. 6                                      |              | R5. 7.19             |                  |                |    |   |    |        |
|         | 相馬印 玉野         | R5. 8. 3 ~ R5. 8. 4                                      |              | R5. 8. 8             |                  |                |    |   |    |        |
|         |                | R5. 9. 6 ~ R5. 9. 7                                      |              | R5. 9.13             |                  |                |    |   |    |        |
|         |                | R5. 10. 4 $\sim$ R5. 10. 5                               |              | R5. 10. 17           |                  |                |    |   |    |        |
|         |                | R5. 11. 6 $\sim$ R5. 11. 7<br>R5. 12. 6 $\sim$ R5. 12. 7 |              | R5. 11. 17           |                  |                |    |   |    |        |
|         |                |                                                          |              | R5. 12. 13           |                  |                |    |   |    |        |
|         |                | R5. 4. 6 $\sim$ R5. 4. 7<br>R5. 5. 10 $\sim$ R5. 5. 11   |              | R5. 4.12<br>R5. 5.29 |                  |                |    |   |    |        |
|         |                |                                                          |              | R5. 6.14             |                  |                |    |   |    |        |
|         |                | R5. 6. 5 ~ R5. 6. 6<br>R5. 7. 5 ~ R5. 7. 6               |              | R5. 7. 20            |                  |                |    |   |    |        |
|         | 伊達市 富成         | R5. 8. 3 $\sim$ R5. 8. 4                                 |              | R5. 7. 20            |                  |                | _  |   |    |        |
|         | D. 体山 田水       | R5. 9. 6 ~ R5. 9. 7                                      |              | R5. 9. 14            |                  |                |    |   |    |        |
|         |                | R5. 10. 4 ~ R5. 10. 5                                    |              | R5. 10. 12           |                  |                | _  |   |    |        |
|         |                | R5. 10. 4 ~ R5. 10. 5                                    |              | R5. 10. 12           |                  |                | _  |   |    |        |
|         |                | R5. 12. 6 ~ R5. 12. 7                                    |              | R5. 12. 14           |                  |                |    |   |    |        |
|         | <u> </u>       | No. 14. 0 - No. 14. 1                                    |              | NO. 12. 14           |                  |                |    |   |    |        |

| 試料名    | 採取地点名   | 採取年月日                 |        |            |                  | 測定年月日          |    |   |    |        |
|--------|---------|-----------------------|--------|------------|------------------|----------------|----|---|----|--------|
| P44140 | 沐秋地点有   | 採取千万百                 | 全α · β | γ          | <sup>131</sup> I | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|        |         | R5. 4. 4 ~ R5. 4. 5   |        | R5. 4.11   |                  |                |    |   |    |        |
|        |         | R5. 5. 8 ~ R5. 5. 9   |        | R5. 5.17   |                  |                |    |   |    |        |
|        |         | R5. 6. 1 ~ R5. 6. 2   |        | R5. 6.13   |                  |                |    |   |    |        |
|        |         | R5. 7. 3 ~ R5. 7. 4   |        | R5. 7.21   |                  |                |    |   |    |        |
| 大気浮遊じん | 南会津町 田島 | R5. 8. 1 ~ R5. 8. 2   |        | R5. 8. 7   |                  |                |    |   |    |        |
|        |         | R5. 9. 4 ~ R5. 9. 5   |        | R5. 9.12   |                  |                |    |   |    |        |
|        |         | R5. 10. 2 ~ R5. 10. 3 |        | R5. 10. 10 |                  |                |    |   |    |        |
|        |         | R5.11. 1 ~ R5.11. 2   |        | R5. 11. 20 |                  |                |    |   |    |        |
|        |         | R5. 12. 4 ~ R5. 12. 5 |        | R5. 12. 20 |                  |                |    |   |    |        |

| 試料名     | 採取地点名                | 採取年月目                                       |    |   |       | 測定年月日                   |    |   |    |        |
|---------|----------------------|---------------------------------------------|----|---|-------|-------------------------|----|---|----|--------|
| P(1717D | 採圾地点有                |                                             | 全β | γ | 131 I | <sup>3</sup> H          | Sr | U | Pu | Am, Cm |
|         |                      | R5. 4. 3 ~ R5. 5. 1                         |    |   |       | R5. 6.1                 |    |   |    |        |
|         |                      | R5. 5. 1 ~ R5. 6. 1                         |    |   |       | R5. 6.25                |    |   |    |        |
|         |                      | R5. 6. 1 ∼ R5. 7. 3                         |    |   |       | R5. 8. 2                |    |   |    |        |
|         |                      | R5. 7. 3 ∼ R5. 8. 1                         |    |   |       | R5. 8.23                |    |   |    |        |
|         | 楢葉町 繁岡               | R5. 8. 1 ∼ R5. 9. 1                         |    |   |       | R5. 9.29                |    |   |    |        |
|         |                      | R5. 9. 1 ∼ R5. 10. 2                        |    |   |       | R5. 10. 22              |    |   |    |        |
|         |                      | R5. 10. 2 ∼ R5. 11. 1                       |    | - |       | R5. 12. 7               |    |   |    |        |
|         |                      | R5. 11. 1 ∼ R5. 12. 1                       |    |   |       | R5. 12. 28              |    |   |    |        |
|         |                      | R5. 12. 1 ~ R6. 1. 4                        |    |   |       | R6. 1.27                |    |   |    |        |
|         |                      | R5. 4. 3 ∼ R5. 5. 1                         |    |   |       | R5. 6. 1                |    |   |    |        |
|         |                      | R5. 5. 1 ~ R5. 6. 1                         |    |   |       | R5. 6.26                |    |   |    |        |
|         |                      | R5. 6. 1 ~ R5. 7. 3                         |    |   |       | R5. 8. 2                |    |   |    |        |
|         | cta SZI Mark Cta SZI | R5. 7. 3 ∼ R5. 8. 1                         |    |   |       | R5. 8. 24               |    |   |    |        |
| 大気中水分   | 富岡町 富岡               | R5. 8. 1 ~ R5. 9. 1                         |    |   |       | R5. 9.29                |    |   |    |        |
|         |                      | R5. 9. 1 ~ R5. 10. 2                        |    |   |       | R5. 10. 22              |    |   |    |        |
|         |                      | R5. 10. 2 ~ R5. 11. 1                       |    |   |       | R5. 12. 8               |    |   |    |        |
|         |                      | R5. 11. 1 ~ R5. 12. 1                       |    |   |       | R5. 12. 28              |    |   |    |        |
|         |                      | R5. 12. 1 ~ R6. 1. 4                        |    |   |       | R6. 1.28                |    |   |    |        |
|         |                      | R5. 4. 3 ~ R5. 5. 1                         |    |   |       | R5. 6. 2                |    |   |    |        |
|         |                      | R5. 5. 1 ~ R5. 6. 1                         |    |   |       | R5. 6.26                |    |   |    |        |
|         |                      | R5. 6. 1 ~ R5. 7. 3                         |    |   |       | R5. 8. 3                |    |   |    |        |
|         | 大熊町 大野               | R5. 7. 3 ~ R5. 8. 1                         |    |   |       | R5. 8. 25               |    |   |    |        |
|         | 八馬門 人町               | R5. 8. 1 ~ R5. 9. 1<br>R5. 9. 1 ~ R5. 10. 2 |    |   |       | R5. 9. 30<br>R5. 10. 23 |    |   |    |        |
|         |                      |                                             |    |   |       | R5. 10. 23              |    |   |    |        |
|         |                      |                                             |    |   |       |                         |    |   |    |        |
|         |                      | R5. 11. 1 ~ R5. 12. 1                       |    |   |       | R5. 12. 29              |    |   |    |        |
|         | 1                    | R5. 12. 1 ∼ R6. 1. 4                        |    |   |       | R6. 1.28                |    |   |    |        |

| 試料名    | 採取地点名         | 採取年月目                 |    |   |       | 測定年月日          |    |   |    |        |
|--------|---------------|-----------------------|----|---|-------|----------------|----|---|----|--------|
| BALLAH | 1/4/4/2011/14 |                       | 全β | γ | 131 I | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|        |               | R5. 4. 3 ∼ R5. 5. 1   |    |   |       | R5. 6. 3       | -  |   |    |        |
|        |               | R5. 5. 1 ∼ R5. 6. 1   |    |   |       | R5. 6.27       |    |   |    |        |
|        |               | R5. 6. 1 ∼ R5. 7. 3   |    |   |       | R5. 8. 3       |    |   |    |        |
|        | 1             | R5. 7. 3 ∼ R5. 8. 1   |    |   |       | R5. 8.25       |    |   |    |        |
|        | 大熊町 夫沢        | R5. 8. 1 ∼ R5. 9. 1   |    |   |       | R5. 10.1       |    |   |    |        |
|        |               | R5. 9. 1 ∼ R5. 10. 2  |    |   |       | R5. 10. 24     |    |   |    |        |
|        |               | R5. 10. 2 ∼ R5. 11. 1 |    |   |       | R5. 12. 9      |    |   |    |        |
|        |               | R5. 11. 1 ∼ R5. 12. 1 |    |   |       | R5. 12. 30     |    |   |    |        |
|        |               | R5. 12. 1 ∼ R6. 1. 4  |    |   |       | R6. 1.29       |    |   |    |        |
|        |               | R5. 4. 3 ∼ R5. 5. 1   |    |   |       | R5. 6. 3       |    |   |    |        |
|        |               | R5. 5. 1 ∼ R5. 6. 1   |    |   |       | R5. 6.27       |    |   |    |        |
|        |               | R5. 6. 1 ∼ R5. 7. 3   |    |   |       | R5. 8. 4       |    |   |    |        |
|        |               | R5. 7. 3 ∼ R5. 8. 1   |    |   |       | R5. 8.26       |    |   |    |        |
| 大気中水分  | 双葉町 郡山        | R5. 8. 1 ∼ R5. 9. 1   |    |   |       | R5. 10. 1      |    |   |    |        |
|        |               | R5. 9. 1 ∼ R5. 10. 2  |    |   |       | R5. 10. 24     |    |   |    |        |
|        |               | R5. 10. 2 ~ R5. 11. 1 |    |   |       | R5. 12. 9      |    |   |    |        |
|        |               | R5. 11. 1 ~ R5. 12. 1 |    |   |       | R5. 12. 30     |    |   |    |        |
|        |               | R5. 12. 1 ~ R6. 1. 4  |    |   |       | R6. 1.29       |    |   |    |        |
|        |               | R5. 4. 3 ~ R5. 5. 1   |    |   |       | R5. 5. 18      |    |   |    |        |
|        |               | R5. 5. 1 ~ R5. 6. 1   |    |   |       | R5. 6. 15      |    |   |    |        |
|        |               | R5. 6. 1 ~ R5. 7. 3   |    |   |       | R5. 7. 14      |    |   |    |        |
|        | 与白土 土土田       | R5. 7. 3 ~ R5. 8. 1   |    |   |       | R5. 8. 11      |    |   |    |        |
|        | 福島市 方木田       | R5. 8. 1 ~ R5. 9. 1   |    |   |       | R5. 9. 23      |    |   |    |        |
|        |               | R5. 9. 1 ~ R5. 10. 2  |    |   |       | R5. 10. 21     |    |   |    |        |
|        |               | R5. 10. 2 ~ R5. 11. 1 |    |   |       | R5. 11. 23     |    |   |    |        |
|        |               | R5. 11. 1 ~ R5. 12. 1 |    |   |       | R5. 12. 13     |    |   |    |        |
|        |               | R5. 12. 1 ~ R6. 1. 4  |    |   |       | R6. 1. 13      |    |   |    |        |

| 試料名      | 採取地点名    | 採取年月日                    |    |            |           | 測定年月日          |    |   |    |        |
|----------|----------|--------------------------|----|------------|-----------|----------------|----|---|----|--------|
| PVITA    | 沐水地杰有    | 採圾平方口                    | 全β | γ          | $^{131}I$ | <sup>3</sup> H | Sr | U | Pu | Am, Cn |
|          |          | R5. 4. 4 $\sim$ R5. 5. 2 |    | R5. 5.12   |           |                |    |   |    |        |
|          |          | R5. 5. 2 $\sim$ R5. 6. 2 |    | R5. 6. 9   |           |                |    |   |    |        |
|          |          | R5. 6. 2 $\sim$ R5. 7. 4 |    | R5. 7.17   |           |                |    |   |    |        |
|          |          | R5. 7. 4 $\sim$ R5. 8. 2 |    | R5. 8.11   |           |                |    |   |    |        |
|          | いわき市 久之浜 | R5. 8. 2 ~ R5. 9. 4      |    | R5. 9.14   |           |                |    |   |    |        |
|          |          | R5. 9. 4 ~ R5. 10. 3     |    | R5. 10. 17 |           |                |    |   |    |        |
|          |          | R5. 10. 3 ~ R5. 11. 2    |    | R5. 11. 15 |           |                |    |   |    |        |
|          |          | R5. 11. 2 ~ R5. 12. 4    |    | R5. 12. 15 |           |                |    |   |    |        |
|          |          | R5. 12. 4 ~ R6. 1. 5     |    | R6. 1.16   |           |                |    |   |    |        |
|          |          | R5. 4. 4 ~ R5. 5. 2      |    | R5. 5.14   |           |                |    |   |    |        |
|          |          | R5. 5. 2 ~ R5. 6. 2      |    | R5. 6.14   |           |                |    |   |    |        |
|          |          | R5. 6. 2 ~ R5. 7. 4      |    | R5. 7.16   |           |                |    |   |    |        |
|          |          | R5. 7. 4 ~ R5. 8. 2      |    | R5. 8.11   |           |                |    |   |    |        |
|          | 田村市 都路   | R5. 8. 2 ~ R5. 9. 4      |    | R5. 9.14   |           |                |    |   |    |        |
|          |          | R5. 9. 4 ~ R5. 10. 3     |    | R5. 10. 17 |           |                |    |   |    |        |
|          |          | R5. 10. 3 ∼ R5. 11. 2    |    | R5. 11. 16 |           |                |    |   |    |        |
|          |          | R5. 11. 2 ~ R5. 12. 4    |    | R5. 12. 17 |           |                |    |   |    |        |
| 7/7 d.L. |          | R5. 12. 4 ~ R6. 1. 5     |    | R6. 1.16   |           |                |    |   |    |        |
| 降下物      |          | R5. 4. 3 ~ R5. 5. 1      |    | R5. 6. 4   |           |                |    |   |    |        |
|          |          | R5. 5. 1 ∼ R5. 6. 1      |    | R5. 7.29   |           |                |    |   |    |        |
|          |          | R5. 6. 1 ∼ R5. 7. 3      |    | R5. 8. 2   |           |                |    |   |    |        |
|          |          | R5. 7. 3 ~ R5. 8. 1      |    | R5. 8.24   |           |                |    |   |    |        |
|          | 富岡町 富岡   | R5. 8. 1 ~ R5. 9. 1      |    | R5, 10, 16 |           |                |    |   |    |        |
|          |          | R5. 9. 1 ∼ R5. 10. 2     |    | R5. 10. 20 |           |                |    |   |    |        |
|          |          | R5. 10. 2 ~ R5. 11. 1    |    | R5, 11, 13 | _         |                |    |   |    |        |
|          |          | R5. 11. 1 ~ R5. 12. 1    |    | R6. 1.10   | _         |                |    |   |    |        |
|          |          | R5. 12. 1 ~ R6. 1. 4     |    | R6. 1.12   |           |                |    |   |    |        |
|          |          | R5. 4. 3 ~ R5. 5. 1      |    | R5. 6. 4   | _         |                |    |   |    |        |
|          |          | R5. 5. 1 ~ R5. 6. 1      |    | R5. 7.30   |           |                |    |   |    |        |
|          |          | R5. 6. 1 ~ R5. 7. 3      |    | R5. 8. 3   |           |                |    |   |    |        |
|          |          | R5. 7. 3 ~ R5. 8. 1      |    | R5. 8.28   |           |                |    |   |    |        |
|          | 大熊町 大野   | R5. 8. 1 ~ R5. 9. 1      |    | R5, 10, 17 |           |                |    |   |    |        |
|          |          | R5. 9. 1 ~ R5. 10. 2     |    | R5, 10, 21 |           |                |    |   |    |        |
|          |          | R5. 10. 2 ~ R5. 11. 1    |    | R5, 11, 14 |           |                |    |   |    |        |
|          |          | R5. 11. 1 ~ R5. 12. 1    |    | R6. 1. 11  | _         |                |    |   |    |        |
|          |          | R5. 12. 1 ~ R6. 1. 4     |    | R6. 1.11   |           |                |    | _ |    | _      |

| 試料名       | 採取地点名                        | 採取年月日                 |    |            |           | 測定年月日          |    |   |    |        |
|-----------|------------------------------|-----------------------|----|------------|-----------|----------------|----|---|----|--------|
| B-VI-1-7H | 1/4/4/20/1/14                | *** ***               | 全β | γ          | $^{131}I$ | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|           |                              | R5. 4. 3 ∼ R5. 5. 1   |    | R5. 6. 5   |           |                |    |   |    |        |
|           |                              | R5. 5. 1 ~ R5. 6. 1   |    | R5. 7.31   |           |                |    |   |    |        |
|           |                              | R5. 6. 1 ∼ R5. 7. 3   |    | R5. 8. 4   |           |                |    |   |    |        |
|           |                              | R5. 7. 3 ∼ R5. 8. 1   |    | R5. 8.29   |           |                |    |   |    |        |
|           | 双葉町 郡山                       | R5. 8. 1 ~ R5. 9. 1   |    | R5. 10. 18 |           |                |    |   |    |        |
|           |                              | R5. 9. 1 ~ R5. 10. 2  |    | R5. 10. 22 |           |                |    |   |    |        |
|           |                              | R5. 10. 2 ~ R5. 11. 1 |    | R5. 11. 15 |           |                |    |   |    |        |
|           |                              | R5. 11. 1 ~ R5. 12. 1 |    | R6. 1.12   |           |                |    |   |    |        |
|           |                              | R5. 12. 1 ~ R6. 1. 4  |    | R6. 1.13   |           |                |    |   |    |        |
|           |                              | R5. 4. 3 ~ R5. 5. 1   |    | R5. 6. 6   |           |                |    |   |    |        |
|           |                              | R5. 5. 1 ~ R5. 6. 1   |    | R5. 8. 1   |           |                |    |   |    |        |
|           |                              | R5. 6. 1 ~ R5. 7. 3   |    | R5. 8. 5   |           |                |    |   |    |        |
|           | the Edward                   | R5. 7. 3 ~ R5. 8. 1   |    | R5. 8.30   |           |                |    |   |    |        |
|           | 南相馬市 萱浜                      | R5. 8. 1 ~ R5. 9. 1   |    | R5. 10. 19 |           |                |    |   |    |        |
|           |                              | R5. 9. 1 ~ R5. 10. 2  |    | R5. 10. 23 |           |                |    |   |    |        |
|           |                              | R5. 10. 2 ~ R5. 11. 1 |    | R5. 11. 16 |           |                |    |   |    |        |
|           |                              | R5. 11. 1 ~ R5. 12. 1 |    | R6. 1. 9   |           |                |    |   |    |        |
| 降下物       |                              | R5. 12. 1 ~ R6. 1. 4  |    | R6. 1.14   |           |                |    |   |    |        |
|           |                              | R5. 4. 4 ~ R5. 5. 2   |    | R5. 5. 12  |           |                |    |   |    |        |
|           |                              | R5. 5. 2 ~ R5. 6. 2   |    | R5. 6. 9   |           |                |    |   |    |        |
|           |                              | R5. 6. 2 ~ R5. 7. 4   |    | R5. 7.13   |           |                |    |   |    |        |
|           | July Josephine — July Joseph | R5. 7. 4 ~ R5. 8. 2   |    | R5. 8. 13  |           |                |    |   |    |        |
|           | 浪江町 浪江                       | R5. 8. 2 ~ R5. 9. 4   |    | R5. 9. 8   |           |                |    |   |    |        |
|           |                              | R5. 9. 4 ~ R5. 10. 3  |    | R5. 10. 11 |           |                |    |   |    |        |
|           |                              | R5. 10. 3 ~ R5. 11. 2 |    | R5. 11. 10 |           |                |    |   |    |        |
|           |                              | R5. 11. 2 ~ R5. 12. 4 |    | R5. 12. 8  |           |                |    |   |    |        |
|           |                              | R5. 12. 4 ~ R6. 1. 5  |    | R6. 1.12   |           |                |    |   |    |        |
|           |                              | R5. 4. 4 ~ R5. 5. 2   |    | R5. 5. 15  |           |                |    |   |    |        |
|           |                              | R5. 5. 2 ~ R5. 6. 2   |    | R5. 6.13   |           |                | _  |   |    |        |
|           |                              | R5. 6. 2 ~ R5. 7. 4   |    | R5. 7.14   |           |                |    |   |    |        |
|           | 油江町 冲自                       | R5. 7. 4 ~ R5. 8. 2   |    | R5. 8.11   |           |                | _  |   |    |        |
|           | 浪江町 津島                       | R5. 8. 2 ~ R5. 9. 4   |    | R5. 9. 8   |           |                | _  |   |    |        |
|           |                              | R5. 9. 4 ~ R5. 10. 3  |    | R5. 10. 15 |           |                | _  |   |    |        |
|           |                              | R5. 10. 3 ~ R5. 11. 2 |    | R5. 11. 11 |           |                | _  |   |    |        |
|           |                              | R5. 11. 2 ~ R5. 12. 4 |    | R5. 12. 9  |           |                | _  |   |    |        |
|           |                              | R5. 12. 4 ∼ R6. 1. 5  |    | R6. 1.13   |           |                |    |   |    |        |

| 試料名     | 採取地点名   | 採取年月日                      |    |            |                | 測定年月日          |    |   |    |        |
|---------|---------|----------------------------|----|------------|----------------|----------------|----|---|----|--------|
| 四个十十日   | 採取地点石   |                            | 全β | γ          | $^{131}I$      | <sup>3</sup> H | Sr | U | Pu | Am, Cr |
|         |         | R5. 4. 4 ~ R5. 5. 2        |    | R5. 5.13   | $\overline{}$  |                |    |   |    |        |
|         |         | R5. 5. 2 $\sim$ R5. 6. 2   |    | R5. 6.11   |                |                |    |   |    |        |
|         |         | R5. 6. 2 $\sim$ R5. 7. 4   |    | R5. 7.14   |                |                |    |   |    |        |
|         |         | R5. 7. 4 ∼ R5. 8. 2        |    | R5. 8.12   |                |                |    |   |    |        |
|         | 葛尾村 柏原  | R5. 8. 2 $\sim$ R5. 9. 4   |    | R5. 9.12   | $\underline{}$ |                |    |   |    |        |
|         |         | R5. 9. 4 ∼ R5. 10. 3       |    | R5. 10. 11 |                |                |    |   |    |        |
|         |         | R5. 10. 3 ∼ R5. 11. 2      |    | R5. 11. 10 |                |                |    |   |    |        |
|         |         | R5. 11. 2 ∼ R5. 12. 4      |    | R5.12. 8   |                |                |    |   |    |        |
|         |         | R5. 12. 4 ~ R6. 1. 5       |    | R6. 1.14   |                |                |    |   |    |        |
|         |         | R5. 4. 4 $\sim$ R5. 5. 2   |    | R5. 5.14   |                |                |    |   |    | _      |
|         |         | R5. 5. 2 $\sim$ R5. 6. 2   |    | R5. 6. 9   |                |                |    |   |    |        |
|         |         | R5. 6. 2 $\sim$ R5. 7. 4   |    | R5. 7.13   |                |                |    |   |    |        |
|         |         | R5. 7. 4 ∼ R5. 8. 2        |    | R5. 8. 9   |                |                |    |   |    |        |
|         | 川俣町 山木屋 | R5. 8. 2 ~ R5. 9. 4        |    | R5. 9.14   |                |                |    |   |    |        |
|         |         | R5. 9. 4 ∼ R5. 10. 3       |    | R5. 10. 11 |                |                |    |   |    |        |
|         |         | R5. 10. 3 ∼ R5. 11. 2      |    | R5. 11. 10 |                |                |    |   |    |        |
|         |         | R5. 11. 2 ∼ R5. 12. 4      |    | R5. 12. 8  |                |                |    |   |    |        |
| 降下物     |         | R5. 12. 4 ~ R6. 1. 5       |    | R6. 1.12   |                |                |    |   |    |        |
| 17 1 10 |         | R5. 4. 3 ∼ R5. 5. 1        |    | R5. 5.15   |                |                |    |   |    |        |
|         |         | R5. 5. 1 $\sim$ R5. 6. 1   |    | R5. 6.19   | -              |                |    |   |    |        |
|         |         | R5. 6. 1 $\sim$ R5. 7. 3   |    | R5. 7.27   |                |                |    |   |    |        |
|         |         | R5. 7. 3 ∼ R5. 8. 1        |    | R5. 10.25  |                |                |    |   |    |        |
|         | 福島市 方木田 | R5. 8. 1 ∼ R5. 9. 1        |    | R5. 10.25  |                |                |    |   |    |        |
|         |         | R5. 9. 1 ∼ R5. 10. 2       |    | R5. 11.6   |                |                |    |   |    |        |
|         |         | R5. 10. 2 $\sim$ R5. 11. 1 |    | R5. 12.12  | -              |                |    |   |    |        |
|         |         | R5. 11. 1 ∼ R5. 12. 1      |    | R5. 12.28  |                |                |    |   |    |        |
|         |         | R5. 12. 1 ∼ R6. 1. 6       |    | R6. 1.16   |                |                |    |   |    |        |
|         |         | R5. 4. 3 ∼ R5. 5. 1        |    | R5. 5.15   |                |                |    |   |    |        |
|         |         | R5. 5. 1 ∼ R5. 6. 1        |    | R5. 6.15   |                |                |    |   |    |        |
|         |         | R5. 6. 1 ∼ R5. 7. 3        |    | R5. 8. 1   |                |                |    |   |    |        |
|         |         | R5. 7. 3 ∼ R5. 8. 1        |    | R5. 9. 6   |                |                |    |   |    |        |
|         | 三春町 深作  | R5. 8. 1 ∼ R5. 9. 1        |    | R5. 9.22   |                |                |    |   |    |        |
|         |         | R5. 9. 1 ∼ R5. 10. 2       |    | R5. 11. 17 |                |                |    |   |    |        |
|         |         | R5. 10. 2 ∼ R5. 11. 1      |    | R5. 12. 4  |                |                |    |   |    |        |
|         |         | R5. 11. 1 ∼ R5. 12. 1      |    | R5. 12. 26 |                |                |    |   |    |        |
|         |         | R5, 12, 1 ~ R6, 1, 4       |    | R6. 1.17   |                |                |    |   |    |        |

| 試料名 | 採取地点名                   | 採取年月日      |    |            |           | 測定年月日          |           |           |           |           |
|-----|-------------------------|------------|----|------------|-----------|----------------|-----------|-----------|-----------|-----------|
| 此杆石 |                         | 1米以平月日     | 全β | γ          | $^{131}I$ | <sup>3</sup> H | Sr        | U         | Pu        | Am, Cm    |
|     | いわき市 久之浜                | R5. 5.12   |    | R5. 7.27   |           |                | R5. 9.7   | R5. 8. 1  | R5. 6. 5  | R5. 11. 2 |
|     | V-473日 久之供              | R5.11. 8   |    | R5. 12. 22 |           |                |           |           |           |           |
|     | 田村市 古道                  | R5. 5.18   |    | R5. 7.28   |           |                | R5. 9.7   | R5. 8. 4  | R5. 6. 23 | R5. 11. 6 |
|     | 四有 印 日 旦                | R5.11. 9   |    | R5. 12. 27 |           |                |           |           |           |           |
|     | 広野町 下北追                 | R5. 5.12   |    | R5. 7.29   |           |                | R5. 9.7   | R5. 8. 1  | R5. 6. 5  | R5. 11. 2 |
|     | 四對門 1112                | R5.11. 8   |    | R5. 12. 23 |           |                |           |           |           |           |
|     | 楢葉町 波倉                  | R5. 5. 12  |    | R5. 7.30   |           |                | R5. 9.7   | R5. 8. 17 | R5. 6. 5  | R5. 11. 9 |
|     | 恒未引 仮右                  | R5.11. 8   |    | R6. 1. 4   |           |                |           |           |           |           |
|     | 富岡町 小浜                  | R5. 5. 1   |    | R5. 7.31   |           |                | R5. 9.7   | R5. 8. 1  | R5. 7. 6  | R5. 11. 2 |
|     | 田岡門 71.48               | R5. 11. 1  |    | R5. 12. 24 |           |                |           |           |           |           |
|     | 川内村 上川内                 | R5. 5.18   |    | R5. 8. 1   |           |                | R5. 9.8   | R5. 8. 4  | R5. 6. 23 | R5. 11. 6 |
|     | 7/1F 1/11 - 12/1F 1     | R5. 11. 9  |    | R5. 12. 25 |           |                |           |           |           |           |
|     | 大熊町 小入野                 | R5. 5.31   |    | R5. 8. 2   |           |                | R5. 9.11  | R5. 8. 18 | R5. 7. 3  | R5. 11. 7 |
|     | 7 (MA) 1 7 (M)          | R5. 11. 21 |    | R6. 1. 4   |           |                |           |           |           |           |
| 土壌  | 双葉町 郡山                  | R5. 5.31   |    | R5. 8. 3   |           |                | R5. 9.8   | R5. 8. 15 | R5. 7. 3  | R5. 11. 7 |
| 1.4 | 次来·1 40年                | R5. 11. 21 |    | R6. 1. 5   | -         |                |           |           |           |           |
|     | 浪江町 北幾世橋                | R5. 5.25   |    | R5. 8. 4   |           |                | R5. 9.11  | R5. 8. 15 | R5. 7. 3  | R5. 11. 7 |
|     | 区区内 化发产制                | R5. 11. 22 |    | R5. 12. 26 |           |                |           |           |           |           |
|     | 葛尾村 柏原                  | R5. 5.18   |    | R5. 8. 5   |           |                | R5. 9.11  | R5. 8. 15 | R5. 6. 30 | R5. 11. 6 |
|     | ASTACATA TENAN          | R5.11. 9   |    | R5. 12. 26 |           |                |           |           |           |           |
|     | 南相馬市 浦尻                 | R5. 5.25   |    | R5. 8. 5   |           |                | R5. 9.11  | R5. 8. 15 | R5. 7. 3  | R5. 11. 6 |
|     | 113 147/9/11 113/24     | R5. 11. 22 |    | R5. 12. 27 |           |                |           |           |           |           |
|     | 南相馬市 馬場                 | R5. 5.25   |    | R5. 8. 6   |           |                | R5. 9.11  | R5. 8. 15 | R5. 7. 3  | R5. 11. 7 |
|     | 113   LL My 1  1 My 999 | R5. 11. 22 |    | R6. 1. 5   |           |                |           |           |           |           |
|     | 飯舘村 蕨平                  | R5. 5.17   |    | R5. 8. 7   |           |                | R5. 9.11  | R5. 8. 4  | R5. 6. 23 | R5. 11. 6 |
|     | 20017 ///               | R5. 11. 2  |    | R5. 12. 26 |           |                |           |           |           |           |
|     | 飯舘村 長泥                  | R5. 5.17   |    | R5. 8. 8   |           |                | R5. 9.12  | R5. 8. 4  | R5. 7. 6  | R5. 11. 6 |
|     | 200                     | R5. 11. 2  |    | R5. 12. 27 |           |                |           |           |           |           |
|     | 川俣町 山木屋                 | R5. 5.17   |    | R5. 8. 9   |           |                | R5. 9.12  | R5. 8. 4  | R5. 6. 23 | R5. 11. 7 |
|     |                         | R5.11. 2   |    | R6. 1. 6   |           |                |           |           |           |           |
|     | 福島市 荒井                  | R5. 5.16   |    | R5. 6.7    |           |                | R5. 7.4   | R5. 8. 1  | R5. 6. 21 | R5. 7. 26 |
|     | 郡山市 逢瀬町                 | R5. 5.17   |    | R5. 5.31   |           |                | R5. 8. 10 |           | R5. 6. 15 |           |
|     | いわき市 川部町                | R5. 5.18   |    | R5. 5.31   |           |                | R5. 8. 10 |           | R5. 6. 15 |           |
| 土壌  | 白河市 大信隈戸                | R5. 5.17   |    | R5. 6. 5   |           |                | R5. 7. 20 |           | R5. 6. 15 |           |
|     | 相馬市 中村                  | R5. 5.18   |    | R5. 6. 5   |           |                | R5. 7. 20 |           | R5. 6. 20 |           |
|     | 会津若松市 一箕町               | R5. 5.16   |    | R5. 6. 6   |           |                | R5. 8. 10 |           | R5. 6. 15 |           |
|     | 南会津町 糸沢                 | R5. 5.16   |    | R5. 6. 6   |           |                | R5. 7. 20 |           | R5. 6. 15 |           |

| 試料名     | 採取地点名     | 採取年月日       |    |            |           | 測定年月日          |           |   |           |             |
|---------|-----------|-------------|----|------------|-----------|----------------|-----------|---|-----------|-------------|
| PV17171 | 1人4人10小小山 | 21000177410 | 全β | γ          | $^{131}I$ | <sup>3</sup> H | Sr        | U | Pu        | Am, Cm      |
|         |           | R5. 4. 5    |    | R5. 5.16   |           | R5. 6. 9       |           |   |           |             |
|         | いわき市      | R5. 7. 4    |    | R5. 7.14   |           | R5. 7.29       | R5. 8.29  |   | R5. 7. 18 |             |
|         |           | R5. 10. 3   |    | R5. 10. 13 |           | R5. 11. 11     |           |   |           |             |
|         |           | R5. 4. 7    |    | R5. 5.17   |           | R5. 6. 9       |           |   |           |             |
|         | 田村市       | R5. 7. 4    |    | R5. 7.16   |           | R5. 7.30       | R5. 8.29  |   | R5. 7. 18 |             |
|         |           | R5. 10. 3   |    | R5. 10. 19 |           | R5. 11. 11     |           |   |           |             |
|         |           | R5. 4. 5    |    | R5. 5.11   |           | R5. 6.10       |           |   |           |             |
|         | 広野町       | R5. 7. 5    |    | R5. 7.23   |           | R5. 7.30       | R5. 8.29  |   | R5. 7. 18 |             |
|         |           | R5. 10. 4   |    | R5. 10. 15 |           | R5. 11. 12     |           |   |           |             |
|         |           | R5. 4. 5    |    | R5. 5. 3   |           | R5. 6.10       |           |   |           |             |
|         | 楢葉町       | R5. 7. 5    |    | R5. 7.17   |           | R5. 7.31       | R5. 8.29  |   | R5. 7. 18 |             |
|         |           | R5. 10. 4   |    | R5. 10. 15 |           | R5. 11. 13     |           |   |           |             |
|         |           | R5. 4. 7    |    | R5. 5. 3   |           | R5. 6.11       |           |   |           |             |
|         | 富岡町       | R5. 7. 6    |    | R5. 7.21   |           | R5. 7.31       | R5. 8.29  |   | R5. 8. 7  |             |
|         |           | R5. 10. 4   |    | R5. 10. 17 |           | R5. 11. 14     |           |   |           |             |
|         |           | R5. 4. 7    |    | R5. 5.10   |           | R5. 6.12       |           |   |           |             |
| 上水      | 川内村       | R5. 7. 3    |    | R5. 7.23   |           | R5. 8. 1       | R5. 9.15  |   | R5. 7. 18 |             |
|         |           | R5. 10. 2   |    | R5. 10. 18 |           | R5. 11. 14     |           |   |           |             |
|         |           | R5. 4. 6    |    | R5. 5. 7   |           | R5. 6.12       |           |   |           | $\setminus$ |
|         | 大熊町       | R5. 7. 6    |    | R5. 7.26   |           | R5. 8. 2       | R5. 9.15  |   | R5. 8. 7  |             |
|         |           | R5. 10. 4   |    | R5. 10. 20 |           | R5. 11. 15     |           |   |           |             |
|         |           | R5. 4. 6    |    | R5. 5. 7   |           | R5. 6.13       |           |   |           |             |
|         | 双葉町       | R5. 7. 6    |    | R5. 7.21   |           | R5. 8. 2       | R5. 9.15  |   | R5. 8. 7  |             |
|         |           | R5. 10. 5   |    | R5. 10. 21 |           | R5. 11. 16     |           |   |           |             |
|         |           | R5. 4. 6    |    | R5. 5.14   |           | R5. 6.13       |           |   |           |             |
|         | 浪江町       | R5. 7. 7    |    | R5. 7.25   |           | R5. 8. 3       | R5. 9.15  |   | R5. 8. 7  |             |
|         |           | R5. 10. 5   |    | R5. 10. 24 |           | R5. 11. 16     |           |   |           |             |
|         |           | R5. 4. 4    |    | R5. 6. 7   |           | R5. 4.25       |           |   |           |             |
|         | 葛尾村       | R5. 7. 5    |    | R5. 8.19   |           | R5. 7.15       | R5. 12. 5 |   | R5. 8. 7  |             |
|         |           | R5. 10. 11  |    | R5. 11. 28 |           | R5. 10. 20     |           |   |           |             |
|         |           | R5. 4. 6    |    | R5. 5.15   |           | R5. 6.14       |           |   |           |             |
|         | 南相馬市      | R5. 7. 7    |    | R5. 7.25   |           | R5. 8. 3       | R5. 9.15  |   | R5. 9. 12 |             |
|         |           | R5. 10. 5   |    | R5, 10, 24 |           | R5. 11. 17     |           |   |           | _           |

| 試料名 | 採取地点名     | 採取年月日      |    |            |           | 測定年月日          |           |   |           |        |
|-----|-----------|------------|----|------------|-----------|----------------|-----------|---|-----------|--------|
| 砂杆石 | 採取地点名     | 1木以十万口     | 全β | γ          | $^{131}I$ | <sup>3</sup> H | Sr        | U | Pu        | Am, Cm |
|     |           | R5. 4. 4   |    | R5. 6. 8   |           | R5. 4.25       |           |   |           |        |
|     | 飯舘村       | R5. 7. 7   |    | R5. 8.20   |           | R5. 7.16       | R5. 12. 5 |   | R5. 8. 7  |        |
|     |           | R5. 10. 3  |    | R5. 11. 28 |           | R5. 10. 21     |           |   |           |        |
| 上水  |           | R5. 4. 4   |    | R5. 6. 9   |           | R5. 4.26       |           |   |           |        |
| 上水  | 川俣町       | R5. 7. 7   |    | R5. 8.21   |           | R5. 7.16       | R5. 12. 5 |   | R5. 8. 7  |        |
|     |           | R5. 10. 11 |    | R5. 11. 27 |           | R5. 10. 21     |           |   |           |        |
|     | 福島市 方木田   | R5. 7.3    |    | R5. 11. 22 |           | R5. 7.26       | R5. 8.24  |   | R5. 7. 10 |        |
|     | 会津若松市 追手町 | R5. 7.3    |    | R5. 8.21   |           | R5. 7.16       |           |   |           |        |

| 試料名      | 採取地点名        | 採取年月日       |            | ı          | 101   | 測定年月日                  |            | ı | _          |        |
|----------|--------------|-------------|------------|------------|-------|------------------------|------------|---|------------|--------|
| H 4111 H | Die Action I | DK-W   74 H | 全β         | γ          | 131 I | <sup>3</sup> H         | Sr         | U | Pu         | Am, Cm |
|          |              | R5. 4.25    | R5. 4.28   | R5. 5.29   |       | R5. 5. 9               | R5. 6.29   |   | R5. 5. 10  |        |
|          |              | R5. 5.10    | R5. 5.18   | R5. 6.10   |       | R5. 5. 25<br>R5. 6. 12 | R5. 7.14   |   | R5. 5. 23  |        |
|          |              | R5. 6. 7    | R5. 6.13   | R5. 8. 6   |       | R5. 6.20               | R5. 8. 4   |   | R5. 6. 20  |        |
|          |              | R5. 7.11    | R5. 7.14   | R5. 8.14   |       | R5. 7.29               | R5. 8.24   |   | R5. 7. 24  |        |
|          | 第一(発)南放水口付近  | R5. 8. 8    | R5. 8.18   | R5. 9.15   |       | R5. 8. 18<br>R5. 10. 7 | R5. 9.29   |   | R5. 8. 22  | /      |
|          |              | R5. 9. 3    | R5. 9. 8   | R5. 10. 16 |       | R5. 10. 7              | R5. 10. 19 |   | R5. 9. 13  |        |
|          |              | R5. 10. 12  | R5. 10. 17 | R5. 11. 6  |       | —<br>R5. 11. 5         | R5. 12. 8  |   | R5. 10. 25 |        |
|          |              | R5. 11. 9   | R5. 11. 29 | R5. 11. 22 |       | -<br>R5. 12. 14        | R6. 1. 5   |   | R5. 11. 20 | /      |
| 海水       |              | R5. 12. 5   | R5. 12. 15 | R5. 12. 15 |       | -<br>R5. 12. 30        | R6. 1.18   |   | R5. 12. 21 | /      |
| 144/1    |              | R5. 4.25    | R5. 4.28   | R5. 5.30   |       | R5. 5.10               | R5. 6.29   |   | R5. 5. 10  |        |
|          |              | R5. 5.10    | R5. 5.18   | R5. 6.13   |       | R5. 5. 26<br>R5. 6. 12 | R5. 7.14   |   | R5. 5. 23  | /      |
|          |              | R5. 6. 7    | R5. 6.13   | R5. 8. 6   |       | R5. 6.21               | R5. 8. 4   |   | R5. 6. 20  |        |
|          |              | R5. 7.11    | R5. 7.14   | R5. 8.15   |       | R5. 7.30               | R5. 8.24   |   | R5. 7. 24  | /      |
|          | 第一(発)北放水口付近  | R5. 8. 8    | R5. 8.18   | R5. 9.16   |       | R5. 8. 19<br>R5. 10. 7 | R5. 9.29   |   | R5. 8. 22  | /      |
|          |              | R5. 9. 3    | R5. 9. 8   | R5. 10. 17 |       | R5. 10. 7              | R5. 10. 19 |   | R5. 9. 13  | /      |
|          |              | R5. 10. 12  | R5. 10. 17 | R5.11. 6   |       | -<br>R5. 11. 5         | R5. 12. 8  |   | R5. 10. 25 |        |
|          |              | R5. 11. 9   | R5. 11. 29 | R5. 11. 23 |       | -<br>R5. 12. 14        | R6. 1. 5   |   | R5. 11. 20 |        |
|          |              | R5. 12. 5   | R5. 12. 15 | R5. 12. 16 |       | -<br>R5. 12. 30        | R6. 1.18   |   | R5. 12. 21 |        |

| 試料名   | 採取地点名                    | 採取年月日      |            |            |       | 測定年月日                  |            |   |            |        |
|-------|--------------------------|------------|------------|------------|-------|------------------------|------------|---|------------|--------|
| 政件有   | 1                        | 1木以十万口     | 全β         | γ          | 131 I | <sup>3</sup> H         | Sr         | U | Pu         | Am, Cm |
|       |                          | R5. 4.25   | R5. 4.28   | R5. 5.31   |       | R5. 5.11               | R5. 6.29   |   | R5. 5. 10  |        |
|       |                          | R5. 5.10   | R5. 5.18   | R5. 6.14   |       | R5. 5. 26<br>R5. 6. 13 | R5. 7.14   |   | R5. 5. 23  |        |
|       |                          | R5. 6. 7   | R5. 6.13   | R5. 8. 7   |       | R5. 6.21               | R5. 8. 4   |   | R5. 6. 20  |        |
|       |                          | R5. 7.11   | R5. 7.14   | R5. 8.16   |       | R5. 7.30               | R5. 8.24   |   | R5. 7. 24  |        |
|       | 第一(発)取水口付近<br>(港湾出入口の外側) | R5. 8. 8   | R5. 8.18   | R5. 9.17   |       | R5. 8. 19<br>R5. 10. 8 | R5. 9.29   |   | R5. 8. 22  |        |
|       |                          | R5. 9. 3   | R5. 9. 8   | R5. 10. 18 |       | -<br>R5. 10. 8         | R5. 10. 19 |   | R5. 9. 13  |        |
|       |                          | R5. 10. 12 | R5. 10. 17 | R5.11 .6   |       | -<br>R5. 11. 6         | R5. 12. 8  |   | R5. 10. 25 |        |
|       |                          | R5. 11. 9  | R5. 11. 29 | R5. 11. 24 |       | R5. 12. 15             | R6. 1. 6   |   | R5. 11. 20 |        |
| 海水    |                          | R5. 12. 5  | R5. 12. 15 | R5. 12. 17 |       | -<br>R5. 12. 31        | R6. 1.18   |   | R5. 12. 21 |        |
| 11471 |                          | R5. 4.25   | R5. 4.28   | R5. 6. 1   |       | R5. 5.11               | R5. 6.29   |   | R5. 5. 10  |        |
|       |                          | R5. 5.10   | R5. 5.18   | R5. 6.15   |       | R5. 5. 27<br>R5. 6. 14 | R5. 7.14   |   | R5. 5. 23  |        |
|       |                          | R5. 6. 7   | R5. 6.13   | R5. 8. 8   |       | R5. 6.22               | R5. 8. 4   |   | R5. 6. 20  |        |
|       |                          | R5. 7.11   | R5. 7.14   | R5. 8.17   |       | R5. 7.31               | R5. 8.24   |   | R5. 7. 24  |        |
|       | 第一(発)沖合2km               | R5. 8. 8   | R5. 8.18   | R5. 9.18   |       | R5. 8. 20<br>R5. 10. 9 | R5. 9.29   |   | R5. 8. 22  |        |
|       |                          | R5. 9. 3   | R5. 9. 8   | R5. 10. 18 |       | R5. 10. 9              | R5. 10. 19 |   | R5. 9. 13  |        |
|       |                          | R5. 10. 12 | R5. 10. 17 | R5. 11. 7  |       | -<br>R5. 11. 7         | R5. 12. 8  |   | R5. 10. 25 |        |
|       |                          | R5. 11. 9  | R5. 11. 29 | R5. 11. 22 |       | R5. 12. 15             | R6. 1. 6   |   | R5. 11. 27 |        |
|       |                          | R5. 12. 5  | R5. 12. 15 | R5. 12. 15 |       | R6. 1. 1               | R6. 1.18   |   | R5. 12. 21 |        |

| 試料名    | 採取地点名                | 採取年月日      |            |            |       | 測定年月日                   |            |             |            |        |
|--------|----------------------|------------|------------|------------|-------|-------------------------|------------|-------------|------------|--------|
| 144741 | 1休以地点石               | 1米以十万日     | 全β         | γ          | 131 I | <sup>3</sup> H          | Sr         | U           | Pu         | Am, Cm |
|        |                      | R5. 4.25   | R5. 4.28   | R5. 6. 2   |       | R5. 5.12                | R5. 6.29   |             | R5. 5. 10  |        |
|        |                      | R5. 5.10   | R5. 5.18   | R5. 6.15   |       | R5. 5. 27<br>R5. 6. 14  | R5. 7.14   | $\setminus$ | R5. 5. 23  |        |
|        |                      | R5. 6. 7   | R5. 6.13   | R5. 8. 9   |       | R5. 6.22                | R5. 8. 4   |             | R5. 6. 20  |        |
|        |                      | R5. 7.11   | R5. 7.14   | R5. 8.18   |       | R5. 7.31                | R5. 8.24   |             | R5. 7. 24  |        |
|        | 夫沢・熊川沖2km<br>(大熊町)   | R5. 8. 8   | R5. 8.18   | R5. 9.19   |       | R5. 8. 20<br>R5. 10. 9  | R5. 9.29   |             | R5. 8. 22  |        |
|        |                      | R5. 9. 3   | R5. 9. 8   | R5. 10. 19 |       | R5. 10. 9               | R5. 10. 19 |             | R5. 9. 13  |        |
|        |                      | R5. 10. 12 | R5. 10. 17 | R5. 11. 7  |       | -<br>R5. 11. 7          | R5. 12. 8  |             | R5. 10. 25 |        |
|        |                      | R5. 11. 9  | R5. 11. 29 | R5. 11. 23 |       | -<br>R5. 12. 16         | R6. 1. 6   |             | R5. 11. 20 |        |
| 海水     |                      | R5. 12. 5  | R5. 12. 15 | R5. 12. 16 |       | R6. 1. 1                | R6. 1.18   |             | R5. 12. 21 |        |
| 19471  |                      | R5. 4.25   | R5. 4.28   | R5. 6. 3   |       | R5. 5.12                | R5. 6.29   |             | R5. 5. 10  |        |
|        |                      | R5. 5.10   | R5. 5.18   | R5. 6.17   |       | R5. 5. 28<br>R5. 6. 15  | R5. 7.14   |             | R5. 5. 23  |        |
|        |                      | R5. 6. 7   | R5. 6.13   | R5. 8.10   |       | R5. 6.23                | R5. 8. 5   |             | R5. 6. 20  |        |
|        |                      | R5. 7.11   | R5. 7.14   | R5. 8.18   |       | R5. 8. 1                | R5. 8.24   |             | R5. 7. 24  |        |
|        | 双葉町・前田川沖2km<br>(双葉町) | R5. 8. 8   | R5. 8.18   | R5. 9.20   |       | R5. 8. 21<br>R5. 10. 10 | R5. 9.29   |             | R5. 8. 22  |        |
|        |                      | R5. 9. 3   | R5. 9. 8   | R5. 10. 19 |       | -<br>R5. 10. 10         | R5. 10. 19 |             | R5. 9. 14  |        |
|        |                      | R5. 10. 12 | R5. 10. 17 | R5. 11 . 7 |       | -<br>R5. 11. 8          | R5. 12. 9  |             | R5. 10. 25 |        |
|        |                      | R5. 11. 9  | R5. 11. 30 | R5. 11. 24 |       | R5. 12. 17              | R6. 1. 6   |             | R5. 11. 20 |        |
|        |                      | R5. 12. 5  | R5. 12. 15 | R5. 12. 18 |       | R6. 1. 2                | R6. 1.18   |             | R5. 12. 21 |        |

| 試料名 | 採取地点名                | 採取年月日      |            |            |           | 測定年月日                   |            |   |            |        |
|-----|----------------------|------------|------------|------------|-----------|-------------------------|------------|---|------------|--------|
| 武   | 休取地点名                | 休取平月日      | 全β         | γ          | $^{131}I$ | <sup>3</sup> H          | Sr         | U | Pu         | Am, Cm |
|     |                      | R5. 5.10   | R5. 5.18   | R5. 6.18   |           | R5. 5. 29<br>R5. 6. 15  | R5. 7.15   |   | R5. 5. 22  |        |
|     |                      | R5. 8. 8   | R5. 8.19   | R5. 9. 8   |           | R5. 8. 22<br>R5. 10. 10 | R5. 9.30   |   | R5. 8. 23  |        |
|     | ALPS処理水放出口           | R5. 9. 3   | R5. 9. 8   | R5. 10. 20 |           | -<br>R5. 10. 10         | R5. 10. 20 |   | R5. 9. 14  |        |
|     | 予定場所北 2 km 西 0. 5 km | R5. 10. 12 | R5. 10. 17 | R5. 11. 9  |           | R5. 11. 9               | R5. 12. 9  |   | R5. 10. 26 |        |
|     |                      | R5. 11. 9  | R5. 11. 30 | R5. 11. 30 |           | R5. 12. 17              | R6. 1. 6   |   | R5. 11. 21 |        |
|     |                      | R5. 12. 5  | R5. 12. 15 | R5. 12. 21 |           | R6. 1. 2                | R6. 1.19   |   | R5. 12. 22 | /      |
|     |                      | R5. 5. 10  | R5. 5.19   | R5. 6.18   |           | R5. 5. 29<br>R5. 6. 16  | R5. 7.15   |   | R5. 5. 22  |        |
|     |                      | R5. 8. 8   | R5. 8.19   | R5. 9. 9   |           | R5. 8. 22<br>R5. 10. 11 | R5. 9.30   |   | R5. 8. 23  |        |
| 海水  | ALPS処理水放出口           | R5. 9. 3   | R5. 9. 9   | R5. 10. 21 |           | R5. 10. 11              | R5. 10. 20 |   | R5. 9. 14  | /      |
|     | 予定場所北1km             | R5. 10. 12 | R5. 10. 17 | R5. 11. 9  |           | R5. 11. 9               | R5. 12. 9  |   | R5. 10. 26 | /      |
|     |                      | R5. 11. 9  | R5. 11. 30 | R5. 11. 30 |           | R5. 12. 18              | R6. 1. 6   |   | R5. 11. 21 | /      |
|     |                      | R5. 12. 5  | R5. 12. 16 | R5. 12. 21 |           | R6. 1. 3                | R6. 1.19   |   | R5. 12. 22 |        |
|     |                      | R5. 5. 10  | R5. 5.19   | R5. 6.19   |           | R5. 5. 30<br>R5. 6. 17  | R5. 7.15   |   | R5. 5. 22  |        |
|     |                      | R5. 8. 8   | R5. 8.19   | R5. 9.10   |           | R5. 8. 23<br>R5. 10. 12 | R5. 9.30   |   | R5. 8. 23  |        |
|     | ALPS処理水放出口           | R5. 9. 3   | R5. 9. 9   | R5. 10. 22 |           | R5. 10. 12              | R5. 10. 20 |   | R5. 9. 14  | /_     |
|     | 予定場所南 1 km           | R5. 10. 12 | R5. 10. 18 | R5. 11. 9  |           | R5. 11. 10              | R5. 12. 9  |   | R5. 10. 26 | /_     |
|     |                      | R5. 11. 9  | R5. 11. 30 | R5. 11. 30 |           | R5. 12. 19              | R6. 1. 6   |   | R5. 11. 21 | /_     |
|     |                      | R5. 12. 5  | R5. 12. 16 | R5. 12. 21 |           | R6. 1. 4                | R6. 1.19   |   | R5. 12. 22 |        |

| 試料名 | 採取地点名     | 採取年月日      | 測定年月日      |            |                  |                |            |   |           |        |  |  |
|-----|-----------|------------|------------|------------|------------------|----------------|------------|---|-----------|--------|--|--|
| 政府省 | 1米以地点名    | 1米収十月日     | 全β         | γ          | <sup>131</sup> I | <sup>3</sup> H | Sr         | U | Pu        | Am, Cm |  |  |
|     |           | R5. 5.12   | R5. 5.19   | R5. 6.26   |                  | R5. 5.31       | R5. 7.15   |   | R5. 6. 8  |        |  |  |
|     | 第二(発)南放水口 | R5. 8.25   | R5. 9. 1   | R5. 9. 9   |                  | R5. 9. 8       |            |   |           |        |  |  |
|     |           | R5. 11. 24 | R5. 11. 30 | R5. 12. 4  |                  | R5. 12. 10     |            |   |           |        |  |  |
| 海水  |           | R5. 5.12   | R5. 5.19   | R5. 6.27   |                  | R5. 5.30       | R5. 7.15   |   | R5. 6. 8  |        |  |  |
|     | 第二(発)北放水口 | R5. 8.25   | R5. 9. 1   | R5. 9.10   |                  | R5. 9. 9       |            |   |           |        |  |  |
|     |           | R5. 11. 24 | R5. 11. 30 | R5. 12. 5  |                  | R5. 12. 11     |            |   |           |        |  |  |
|     | 相馬市 松川浦沖  | R5. 9.25   | R5. 11. 1  | R5. 11. 20 |                  | R5. 10.22      | R5. 11. 17 |   | R5. 10. 4 |        |  |  |

<sup>(</sup>注) 1 「/」: 対象外核種 「一」: 測定値なし 2 トリチウム濃度の測定は、上段が減圧蒸留法、下段が電解濃縮法による。

| 試料名 | 採取地点名              | 採取年月日      |    |            |           | 測定年月日          |            |   |            |        |
|-----|--------------------|------------|----|------------|-----------|----------------|------------|---|------------|--------|
| 武科名 | 休取地点名              | 休取千月日      | 全β | γ          | $^{131}I$ | <sup>3</sup> H | Sr         | U | Pu         | Am, Cm |
|     |                    | R5. 5.10   |    | R5. 6.20   |           |                | R5. 7.25   |   | R5. 6. 6   |        |
|     | 第一(発)南放水口付近        | R5. 8. 8   |    | R5. 9.21   |           |                | R5. 11. 15 |   | R5. 9. 11  |        |
|     |                    | R5.11. 9   |    | R5. 11. 25 |           |                | R6. 1.9    |   | R5. 12. 18 |        |
|     |                    | R5. 5.10   |    | R5. 6.21   |           |                | R5. 7.25   |   | R5. 6. 6   |        |
|     | 第一(発)北放水口付近        | R5. 8. 8   |    | R5. 9.22   |           |                | R5. 11. 15 |   | R5. 9. 11  |        |
| -   |                    | R5.11. 9   |    | R5. 11. 26 |           |                | R6. 1.9    |   | R5. 12. 18 |        |
|     | 第一(発)取水口付近         | R5. 5.10   |    | R5. 6.22   |           |                | R5. 7.25   |   | R5. 6. 6   |        |
|     | (港湾出入口の外側)         | R5. 8. 8   |    | R5. 9.22   |           |                | R5. 11. 15 |   | R5. 9. 11  |        |
|     | (福得田八口の)下側)        | R5.11. 9   |    | R5. 11. 27 |           |                | R6. 1.9    |   | R5. 12. 18 |        |
|     |                    | R5. 5.10   |    | R5. 6.23   |           |                | R5. 7.25   |   | R5. 6. 6   |        |
|     | 第一(発)沖合2km         | R5. 8. 8   |    | R5. 9.23   |           |                | R5. 11. 15 |   | R5. 9. 11  |        |
|     |                    | R5. 11. 9  |    | R5. 11. 25 |           |                | R6. 1.9    |   | R5. 12. 18 |        |
| 海底土 | 夫沢・熊川沖2km<br>(大熊町) | R5. 5.10   |    | R5. 6.24   |           |                | R5. 7.25   |   | R5. 6. 6   |        |
|     |                    | R5. 8. 8   |    | R5. 9.24   |           |                | R5. 11. 16 |   | R5. 9. 11  |        |
|     | ()CBEM1)           | R5.11. 9   |    | R5. 11. 26 |           |                | R6. 1.9    |   | R5. 12. 18 |        |
|     | 双葉町・前田川沖2km        | R5. 5.10   |    | R5. 6.25   |           |                | R5. 7.25   |   | R5. 6. 6   |        |
|     | (双葉町)              | R5. 8. 8   |    | R5. 9.25   |           |                | R5. 11. 16 |   | R5. 9. 12  |        |
|     | (灰条門)              | R5.11. 9   |    | R5. 11. 27 |           |                | R6. 1.9    |   | R5. 12. 18 |        |
|     |                    | R5. 5.12   |    | R5. 6.28   |           |                | R5. 7.26   |   | R5. 6. 5   |        |
|     | 第二(発)南放水口          | R5. 8.25   |    | R5. 9.26   |           |                |            |   |            |        |
|     |                    | R5. 11. 24 |    | R5. 12. 4  |           |                |            |   |            |        |
|     |                    | R5. 5.12   |    | R5. 6.29   |           |                | R5. 7.26   |   | R5. 6. 5   |        |
|     | 第二(発)北放水口          | R5. 8.25   |    | R5. 9.27   |           |                |            |   |            |        |
|     |                    | R5. 11. 24 |    | R5. 12. 7  |           |                |            |   |            |        |
|     | 相馬市 松川浦沖           | R5. 9.25   |    | R5. 10. 26 |           |                | R5. 11. 17 |   | R5. 10. 24 |        |

| 試料名 | 採取地点名     | 採取年月日      |     |            |                  | 測定年月日          |    |   |    |        |
|-----|-----------|------------|-----|------------|------------------|----------------|----|---|----|--------|
| 政府省 | 休以地点有     | 1米収平月日     | 全 β | γ          | <sup>131</sup> I | <sup>3</sup> H | Sr | U | Pu | Am, Cm |
|     | いわき市 久之浜  | R5. 10. 12 |     | R5. 11. 8  | R5. 10. 13       |                |    |   |    |        |
|     | 田村市 古道    | R5. 10. 17 |     | R5. 11. 8  | R5. 10. 18       |                |    |   |    |        |
|     | 広野町 上北迫   | R5. 10. 12 |     | R5. 11. 8  | R5. 10. 13       |                |    |   |    |        |
|     | 楢葉町 波倉    | R5. 10. 12 |     | R5. 11. 13 | R5. 10. 13       |                |    |   |    |        |
|     | 富岡町 小浜    | R5. 10. 19 |     | R5. 11. 13 | R5. 10. 20       |                |    |   |    |        |
|     | 川内村 上川内   | R5. 10. 17 |     | R5. 11. 14 | R5. 10. 18       |                |    |   |    |        |
|     | 大熊町 夫沢    | R5. 10. 24 |     | R5. 11. 13 | R5. 10. 25       |                |    |   |    |        |
|     | 大熊町 大川原   | R5. 10. 24 |     | R5. 11. 14 | R5. 10. 25       |                |    |   |    |        |
|     | 双葉町 郡山    | R5. 10. 24 |     | R5. 11. 15 | R5. 10. 25       |                |    |   |    |        |
| 松葉  | 浪江町 北幾世橋  | R5. 10. 19 |     | R5. 11. 15 | R5. 10. 20       |                |    |   |    |        |
| 四米  | 葛尾村 柏原    | R5. 10. 11 |     | R5. 11. 16 | R5. 10. 12       |                |    |   |    |        |
|     | 南相馬市 浦尻   | R5. 10. 19 |     | R5. 11. 14 | R5. 10. 20       |                |    |   |    |        |
|     | 飯舘村 蕨平    | R5. 10. 3  |     | R5. 11. 15 | R5. 10. 4        |                |    |   |    |        |
|     | 飯舘村 長泥    | R5. 10. 3  |     | R5. 11. 16 | R5. 10. 4        |                |    |   |    |        |
|     | 川俣町 山木屋   | R5. 10. 11 |     | R5. 11. 17 | R5. 10. 12       |                |    |   |    |        |
|     | 福島市 杉妻町   | R5. 11. 20 |     | R5. 1. 19  | R5. 11. 21       |                |    |   |    |        |
|     | 郡山市 麓山    | R5.11. 8   |     | R5. 11. 24 | R6. 11. 9        |                |    |   |    |        |
|     | 白河市 南登り町  | R5.11. 8   |     | R5. 11. 24 | R6. 11. 9        |                |    |   |    |        |
|     | 会津若松市 城東町 | R5. 11. 13 |     | R5. 11. 27 | R6. 11. 14       |                |    |   |    |        |
|     | 南会津町 永田   | R5. 11. 13 |     | R5. 11. 27 | R6. 11. 14       |                |    |   |    |        |

| 試料名      | 採取地点名   | 採取年月日    |     | 測定年月日    |          |                |           |   |          |        |  |  |
|----------|---------|----------|-----|----------|----------|----------------|-----------|---|----------|--------|--|--|
| PV/11/12 | 沐水地点有   |          | 全 β | γ        | 131 I    | <sup>3</sup> H | Sr        | U | Pu       | Am, Cm |  |  |
| ほりだわさ    | 第一(発)海域 | R5. 7.19 |     | R5. 7.27 | R5. 7.20 |                | R5. 11.16 |   | R5. 9. 4 |        |  |  |
| はんたわら    | 第二(発)海域 | R5. 7. 4 |     | R5. 7.28 | R5. 7. 5 |                | R5. 11.16 |   | R5. 9. 4 |        |  |  |

### 第6 参考資料

6-1 福島第一原子力発電所における地下水バイパス水等の海域への排出 に伴う海水モニタリング結果(公表資料)

#### 【地下水バイパス水関係】

県では、福島第一原子力発電所における地下水バイパス水の海域への排出に際し、南放水口付近 (T-2) の海域において、海水モニタリングを実施していますので、最新の公表資料を添付します。

測定項目・・・全ベータ放射能、放射性セシウム、トリチウム

添付資料・・・令和6年2月20日公表資料

#### 【サブドレン・地下水ドレン処理水関係】

県では、福島第一原子力発電所におけるサブドレン・地下水ドレン処理水の海域への排出に際し、福島第一原子力発電所港湾口付近の海域において、海水モニタリングを実施していますので、最新の公表資料を添付します。

測定項目・・・全ベータ放射能、放射性セシウム、トリチウム

添付資料・・・令和6年2月20日公表資料

# 福島第一原子力発電所における地下水バイパス水の海域への排出に伴う海水モニタリングの結果について(12月調査分)

県では、福島第一原子力発電所における地下水バイパス水の海域への排出に際 し、環境への影響を確認するため、海水モニタリングを定期的に実施しております。

#### 【調査結果の概要】

今回は福島第一原子力発電所南放水口付近 (T-2) \*1 の海域1地点における、地下水バイパス水の海域への排出に伴う海水モニタリングの結果です。

採取した海水中の放射能濃度(単位: Bq/L)は、全ベータ放射能は 0.03、セシウム-134、137 及びトリチウムは検出下限値未満でした。

なお、今回の調査を含め調査開始以降、東京電力の運用目標値、排水に関する国の安全規制の基準及びWHOの飲料水の基準を大幅に下回っています。

#### ○12 月調査分における海水の放射能濃度(単位: Bq/L)

排出 時刻10時19分~16時53分、排出量1,757m3

|        | 全ベータ放射能      | セシウム-134     | セシウム-137    | トリチウム    |
|--------|--------------|--------------|-------------|----------|
|        | 0.03         | 検出下限値未満      | 検出下限値未満     | 検出下限値未満  |
| 12月12日 |              | (<0.055)     | (<0.051)    | (<0.36)  |
| 11:36  | (検出下限値未満     | (検出下限値未満     | (検出下限値未満    | (検出下限値未満 |
|        | $\sim$ 0.22) | $\sim$ 0.54) | $\sim$ 1.6) | ~8.8)    |

( )内は初回排出から前回調査分までの放射能濃度の範囲

|               | 全ベータ放射能 | セシウム-134 | セシウム-137 | トリチウム  |
|---------------|---------|----------|----------|--------|
| 東京電力の運用目標値    | 5       | 1        | 1        | 1,500  |
| 排水に関する国の安全規制の | 30**2   | 60       | 90       | 60,000 |
| 基準            |         |          |          |        |
| WHOの飲料水の基準    | 10**2   | 10       | 10       | 10,000 |

- ※1 試料採取作業の安全確保ができないため、令和3年12月から採取地点を南放水口から南側に約1300mの地点に一時的に変更していたが、作業安全性が確保できたため、令和5年12月採水分から、南放水口から南側に約320mの地点に戻した。(詳細な位置図は別紙「採水地点及び排水地点」参照)
- ※2 放射性ストロンチウム(Sr-90)についての値

速報

## 福島第一原子力発電所における地下水バイパス水の排出に伴う海水モニタリングの結果

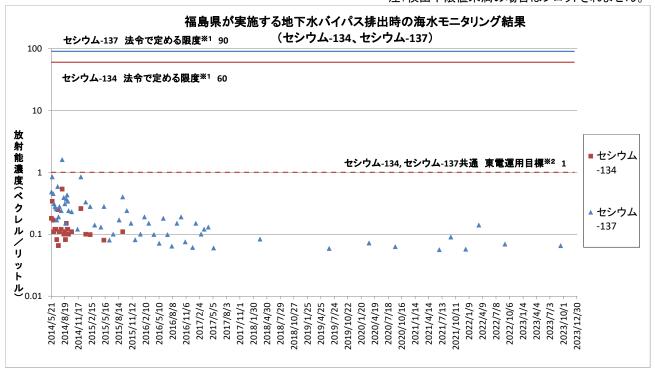
〇今回の公表分は黄色網掛け部分です。

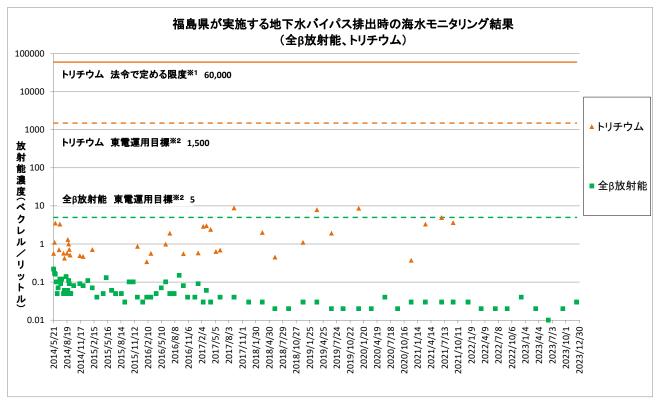
令和6年2月20日 福島県放射線監視室

| 試料名     | 地点名                | 採取年月日       | 福島               |                     | 定結果(Bq/           | ′L)                |            |                 |
|---------|--------------------|-------------|------------------|---------------------|-------------------|--------------------|------------|-----------------|
| በዲላተ ነገ | 地無石                | スペープロ       | 全β放射能※           | セシウム-134            | セシウム-137          | トリチウム              |            |                 |
|         |                    | R5, 12, 12  | 0, 03            | 検出下限値未満             | 検出下限値未満           | 検出下限値未満            |            |                 |
|         |                    | 1(0, 12, 12 | 0.00             | (<0. 055)           | (<0.051)          | (<0.36)            |            |                 |
|         |                    | R5. 9. 12   | 0. 02            | 検出下限値未満<br>(<0.051) | 0. 065            | 検出下限値未満<br>(<0.38) |            |                 |
|         |                    |             |                  | 検出下限値未満             | 検出下限値未満           | 検出下限値未満            |            |                 |
|         |                    | R5. 6. 7    | 0. 01            | (<0.064)            | (<0.049)          | (<0.37)            |            |                 |
|         |                    | 令和4年度       | 0. 02~0. 04      | 検出下限値未満             | 検出下限値未満<br>~0.069 | 検出下限値未満            |            |                 |
|         |                    | 令和3年度       | 0. 02~0. 03      | 検出下限値未満             | 0.056~0.14        | 検出下限値未満<br>~4.9    |            |                 |
| 海北      | <br>  南放水口付近 (T-2) | 令和2年度       | 0.02~0.04        | 検出下限値未満             | 検出下限値未満<br>~0.063 | 検出下限値未満<br>~3.3    |            |                 |
| 海水      | (地下水排出中)           | 令和元年度       | 0. 02            | 検出下限値未満             | 検出下限値未満<br>~0.072 | 検出下限値未満<br>~8.6    |            |                 |
|         |                    | 平成30年度      | 0.02~0.03        | 検出下限値未満             | 検出下限値未満           | 検出下限値未満<br>~7.9    |            |                 |
|         |                    | 平成29年度      | 検出下限値未満<br>~0.04 | 検出下限値未満             | 検出下限値未満<br>~0.13  | 検出下限値未満<br>~8.8    |            |                 |
|         |                    |             |                  | 平成28年度              | 0. 03~0. 15       | 検出下限値未満            | 0.061~0.19 | 検出下限値未満<br>~3.0 |
|         |                    | 平成27年度      | 0. 03~0. 13      | 検出下限値未満<br>~0.11    | 0. 080~0. 40      | 検出下限値未満<br>~0.86   |            |                 |
|         |                    | 平成26年度      | 0. 04~0. 22      | 検出下限値未満<br>~0.54    | 0.12~1.6          | 検出下限値未満<br>~3.5    |            |                 |

○東京電力ホールディングス(株)の測定結果については次のホームページで確認できます。

http://www.tepco.co.jp/decommision/planaction/monitoring/index-j.html

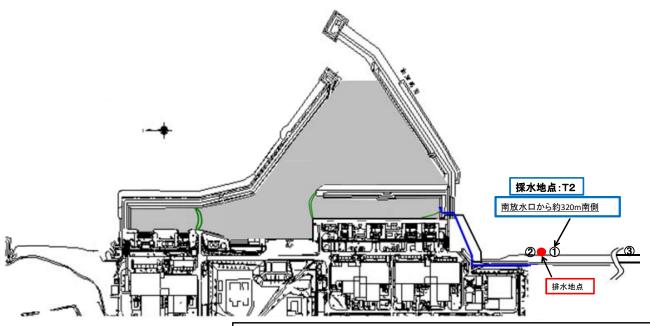

#### 平成26年5月21日 (初回排出日) 以前のモニタリング結果


| 試料名                    | 地点名                       | 採取年月日                                            | 福島県による測定結果(Bq/L) |                  |                   |                  |  |  |
|------------------------|---------------------------|--------------------------------------------------|------------------|------------------|-------------------|------------------|--|--|
| በ ተተ                   | 也不行                       | 沐松千万口                                            | 全β放射能※           | セシウム-134         | セシウム-137          | トリチウム            |  |  |
| (参考)<br>県が平成25年度以      | 南放水口付近(T-2)<br>(陸側から採取)   | H25. 10. 3、H25. 10. 17<br>H25. 10. 21、H27. 2. 25 | 0. 16~0. 48      | 0. 082~0. 80     | 0.33~1.8          | 検出下限値未満<br>~0.69 |  |  |
| 降に実施した海域<br>モニタリングにお   | 南放水口付近(T-2-1)<br>(陸側から採取) | H25. 6. 27<br>H27. 2. 25                         | 0. 07            | 0.31~0.36        | 0.59~1.2          | 0. 32~0. 91      |  |  |
| ける測定値の範囲               | 南放水口付近(F-P01)<br>(船舶から採取) | H25. 7. 31~H28. 12. 12                           | 0. 02~0. 64      | 検出下限値未満<br>~0.35 | 検出下限値未満<br>~0.71  | 検出下限値未満<br>~2.4  |  |  |
| (参考) 県が測定し<br>た原発事故前の値 | 発電所周辺海域                   | 平成13~22年度                                        | 検出下限値未満<br>~0.05 | 検出下限値未満          | 検出下限値未満<br>~0.003 | 検出下限値未満<br>~2.9  |  |  |

%全 $\beta$ 放射能の測定法については、文部科学省放射能測定法シリーズ 1 「全ベータ放射能測定法」に記載されている鉄バリウム共沈法により実施しています。

#### 測定値と法令で定める限度及び東電運用目標との比較

注:検出下限値未満の場合はプロットされません。






- 東京電力株式会社福島第一原子力発電所原子炉施設の保安及び特定核燃料物質の防護に関する規則に定める排水の告示濃度限度 福島第一原子力発電所 地下水バイパス水一時貯留タンクの運用目標値 平成26年9月13日排水時まで排出毎に調査実施。但し、平成26年7月21日及び8月5日の排出時の海水試料は採取できず。
- 平成26年9月13日以降は毎月1回、平成29年6月6日以降は四半期1回のモニタリングに変更しています。

#### 別紙

### 採水地点及び排水地点(東京電力資料より)



採水地点①: 平成29年1月採水分まで、平成30年3月採水分から令和3年9月採水分まで及び令和5年12月採水分 以降の採水地点(南放水口から約320m南側) 採水地点②: 平成29年2月採水分から同年12月採水分までの採水地点(南放水口から約280m南側) 採水地点③: 令和3年12月から令和5年9月採水分までの採水地点(南放出口から約1300m南側)

# 福島第一原子力発電所におけるサブドレン・地下水ドレン処理済み水の海域への排出に伴う海水モニタリングの結果について(12月調査分)

県では、福島第一原子力発電所におけるサブドレン・地下水ドレン処理済み水の海域への排出に際し、環境への影響を継続的に監視するため、海水モニタリングを定期的に実施しております。

#### 【調査結果の概要】

今回は福島第一原子力発電所港湾口付近\*の海域1地点における、<u>サブドレン・</u>地下水ドレン処理済み水の海域への排出に伴う海水モニタリングの結果です。

採取した海水中の放射能濃度(単位: Bq/L)は、セシウム-137 は 0.081、全ベータ放射能は 0.02、セシウム-134 及びトリチウムは検出下限値未満でした。

なお、今回の調査を含め調査開始以降、東京電力の運用目標値、排水に関する国の安全規制の基準及びWHOの飲料水の基準を大幅に下回っています。

#### O12 月調査分における海水の放射能濃度(単位:Bg/L)

排出時刻11時31分~15時16分、排出量560㎡

|        | 全ベータ放射能            | セシウム-134     | セシウム-137 | トリチウム       |
|--------|--------------------|--------------|----------|-------------|
|        | 0.02               | 検出下限値未満      | 0. 081   | 検出下限値未満     |
| 12月21日 |                    | (<0.052)     |          | (<0.36)     |
| 13:03  | $(0.01 \sim 0.10)$ | (検出下限値未満     | (検出下限値未満 | (検出下限値未満    |
|        |                    | $\sim$ 0.10) | ~0.44)   | $\sim$ 2.3) |

( )内は初回排出から前回調査分までの放射能濃度の範囲

|               | 全ベータ放射能 | セシウム-134 | セシウム-137 | トリチウム   |
|---------------|---------|----------|----------|---------|
| 東京電力の運用目標値    | 3       | 1        | 1        | 1,500   |
| 排水に関する国の安全規制の | 30**    | 60       | 90       | 60, 000 |
| 基準            |         |          |          |         |
| WHOの飲料水の基準    | 10**    | 10       | 10       | 10,000  |

※ 放射性ストロンチウム(Sr-90)についての値

#### 福島第一原子力発電所におけるサブドレン・地下水ドレン 処理済み水の排出に伴う海水モニタリングの結果

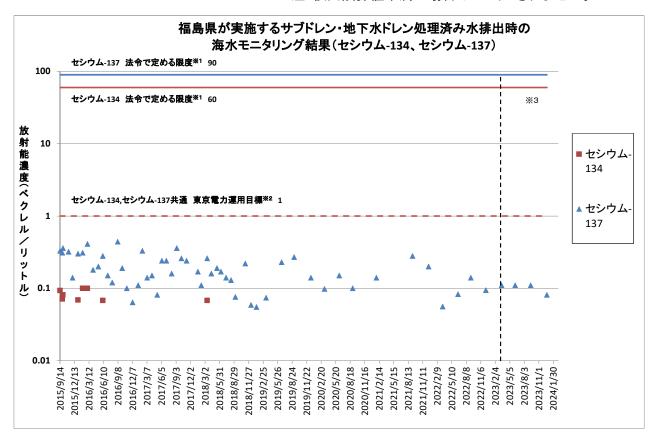
〇今回の公表分は黄色網掛け部分です。

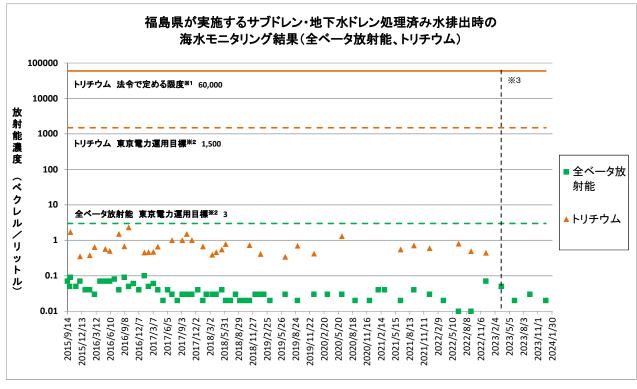
令和6年2月20日 福島県放射線監視室

| = 15 ded . 65 |                                                                   |                      | 福島                        | 島県による測              | 定結果(Bq/          | Ľ)                 |
|---------------|-------------------------------------------------------------------|----------------------|---------------------------|---------------------|------------------|--------------------|
| 試料名           | 満水 港湾口付近 <sup>※2</sup><br>(処理済み水排出中) 海水 北放水口付近(T-1)<br>(処理済み水排出中) | 採取年月日                | 全ベータ<br>放射能 <sup>※1</sup> | セシウム-134            | セシウム-137         | トリチウム              |
|               |                                                                   | R5. 12. 21           | 0. 02                     | 検出下限値未満<br>(<0.052) | 0. 081           | 検出下限値未満<br>(<0.36) |
|               |                                                                   | R5. 9. 12            | 0. 03                     | 検出下限値未満<br>(<0.067) | 0. 11            | 検出下限値未満<br>(<0.37) |
|               | (処理済み水排出中)<br>                                                    | R5. 6. 7             | 0. 02                     | 検出下限値未満<br>(<0.063) | 0. 11            | 検出下限値未満<br>(<0.37) |
|               |                                                                   | 令和4年度                | 0.01~0.07                 | 検出下限値未満             | 0. 083~0. 14     | 検出下限値未満<br>~0.80   |
|               |                                                                   | 令和3年度                | 0.02~0.04                 | 検出下限値未満             | 検出下限値未満<br>~0.28 | 検出下限値未満<br>~0.71   |
| 海水            |                                                                   | 令和2年度                | 0.02~0.04                 | 検出下限値未満             | 検出下限値未満<br>~0.15 | 検出下限値未満<br>~1.3    |
|               |                                                                   | 令和元年度                | 0.02~0.03                 | 検出下限値未満             | 0. 098~0. 27     | 検出下限値未満<br>~0.70   |
|               |                                                                   | 平成30年度               | 0.02~0.04                 | 検出下限値未満             | 検出下限値未満<br>~0.22 | 検出下限値未満<br>~0.55   |
|               |                                                                   | 平成29年度               | 0. 02~0. 04               | 検出下限値未満<br>~0.068   | 検出下限値未満<br>~0.36 | 検出下限値未満<br>~1.5    |
|               |                                                                   | 平成28年度               | 0.04~0.10                 | 検出下限値未満<br>~0.068   | 0.064~0.44       | 検出下限値未満<br>~2.3    |
|               |                                                                   | H27. 9. 14~H28. 3. 2 | 0.03~0.09                 | 検出下限値未満<br>~0.10    | 0. 14~0. 41      | 検出下限値未満<br>~1.7    |

○東京電力ホールディングス(株)の測定結果については次のホームページで確認できます。 http://www.tepco.co.jp/decommision/planaction/monitoring/index-j.html

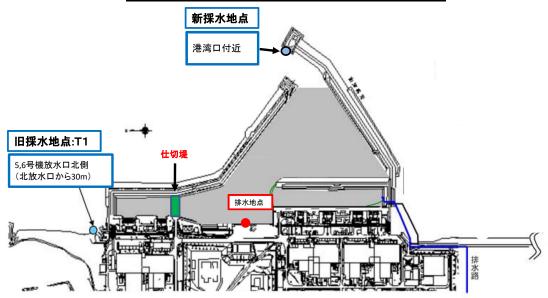
#### 平成27年9月14日(初回排出日)以前のモニタリング結果


| THE PROPERTY OF THE PROPERTY O |                           |                                               |                           |                  |                   |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------|---------------------------|------------------|-------------------|-----------------|
| 試料名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 地点名                       | 採取年月日                                         | 福島県による測定結果(Bq/L)          |                  |                   |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                               | 全ベータ<br>放射能 <sup>※1</sup> | セシウム-134         | セシウム-137          | トリチウム           |
| (参考)<br>県が平成25~26年<br>度に実施した海域<br>モニタリングにお<br>ける測定値の範囲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 北放水口付近(T-1)<br>(陸側から採取)   | H25. 6. 27、H25. 9. 27<br>H26. 4. 4、H27. 2. 25 | 0. 10~0. 49               | 0. 26~2. 4       | 0.84~5.0          | 0.61~1.1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 北放水口付近(F-P02)<br>(船舶から採取) | H25. 7. 31~H27. 3. 3                          | 0. 03~0. 51               | 検出下限値未満<br>~0.24 | 検出下限値未満<br>~0.56  | 検出下限値未満<br>~2.5 |
| (参考) 県が測定し<br>た原発事故前の値                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 発電所周辺海域                   | 平成13~22年度                                     | 検出下限値未満<br>~0.05          | 検出下限値未満          | 検出下限値未満<br>~0.003 | 検出下限値未満<br>~2.9 |


<sup>※1</sup> 全ベータ放射能の測定法については、文部科学省放射能測定法シリーズ1「全ベータ放射能測定法」に記載されている 鉄バリウム共沈法により実施しています。

<sup>※2</sup> ALPS処理水海洋放出に係る取水設備(仕切堤)の設置に伴い、令和5年3月採取分より「5,6号機放水口北側」から「港湾口付近」へ地点を変更しています。

#### 測定値と法令で定める限度及び東電運用目標との比較


注:検出限界値未満の場合はプロットされません。





東京電力株式会社福島第一原子力発電所原子炉施設の保安及び特定核燃料物質の防護に関する規則に定める排水の告示濃度限度福島第一原子力発電所 サブドレン・地下水ドレン浄化水一時貯留タンクの運用目標値 ALPS処理水海洋放出に係る取水設備(仕切堤)の設置に伴い、令和5年3月採取分より「5.6号機放水口北側」から「港湾口付近」へ 地点を変更

## 採水地点及び排水地点(東京電力資料より)



ALPS処理水海洋放出に係る取水設備(仕切堤)の設置に伴い、令和5年3月採取分より「5,6号機放水口北側」から「港湾口付近」へ地点変更

グラフ集

# 各地点の空間線量率等の変動グラフ

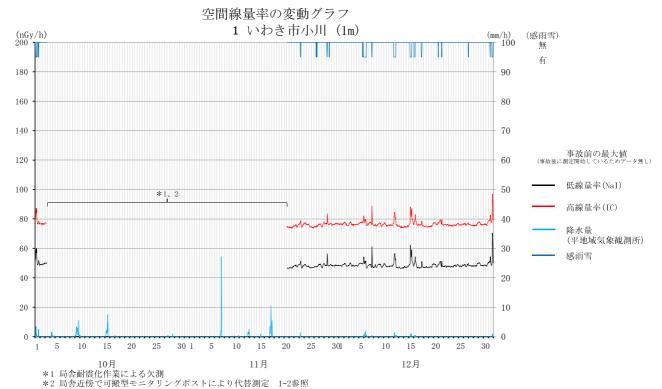
令和5年10月~令和5年12月

福島県

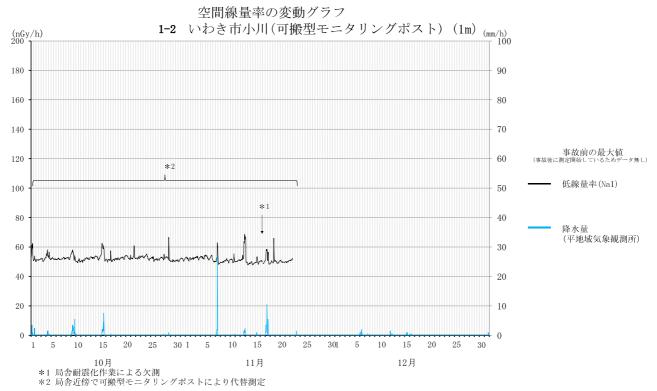
# 目次

| 空間  | 線量率                                          |                                           |
|-----|----------------------------------------------|-------------------------------------------|
| 1   | いわき市小川 (1m) · · · · · 109                    | 37 南相馬市萱浜(1m)・・・・ 130                     |
| 1-2 | いわき市小川(可搬1m) ・・・ 109                         | 38 飯舘村伊丹沢(1m)・・・・ 130                     |
| 2   | いわき市久之浜 (1m)・・・・110                          | 39 川俣町山木屋(1m)・・・・ 131                     |
| 3   | いわき市下桶売(1m)・・・・110                           |                                           |
| 4   | いわき市川前(1m)・・・・ 111                           | 大気浮遊じん(6時間放置後測定)                          |
| 5   | 田村市都路馬洗戸(1m)··· 111                          | 推移                                        |
| 5-2 | 田村市都路馬洗戸(可搬1m) · 112                         | 1 いわき市小川・・・・・・ 132                        |
| 6   | 広野町二ツ沼 (3m)・・・・ 112                          | 2 田村市都路馬洗戸・・・・・ 132                       |
| 7   | 広野町小滝平(1m)・・・・ 113                           | 3 広野町小滝平・・・・・・ 133                        |
|     | 広野町小滝平(可搬1m)・・・113                           | 4 楢葉町木戸ダム・・・・・ 133                        |
|     | 楢葉町山田岡(3m)・・・・ 114                           | 5 楢葉町繁岡・・・・・・ 134                         |
|     | 楢葉町木戸ダム (1m) ・・・ 114                         | 6 富岡町富岡・・・・・・ 134                         |
|     | 楢葉町繁岡 (3m)・・・・・ 115                          | 7 川内村下川内・・・・・・ 135                        |
|     | 楢葉町松館 (3m) ・・・・ 115                          | 8 大熊町大野・・・・・・ 135                         |
|     | 楢葉町波倉 (3m) • • • • • 116                     | 9 大熊町夫沢・・・・・・ 136                         |
|     | 富岡町上郡山(3m)・・・・ 116                           | 10 双葉町郡山・・・・・・ 136                        |
|     | 富岡町下郡山(3m)・・・・・117                           | 11 浪江町幾世橋・・・・・・ 137                       |
|     | 富岡町深谷(1m)・・・・・ 117                           | 12 浪江町大柿ダム・・・・・ 137                       |
|     | 富岡町富岡 (3m) • • • • • 118                     | 13 葛尾村夏湯・・・・・・ 138                        |
|     | 富岡町夜の森 (3m)・・・・ 118                          | 14 南相馬市泉沢・・・・・・ 138                       |
|     | 川内村下川内(1m)····119                            | 15 南相馬市萱浜・・・・・・ 139                       |
|     | 川内村下川内(可搬1m)•••119                           | 16 飯舘村伊丹沢・・・・・・ 139                       |
|     | 大熊町向畑 (3m) • • • • 120                       | 17 川俣町山木屋・・・・・・ 140                       |
|     | 大熊町熊川 (1m) · · · · · · 120                   | 17 州侯町田小庄                                 |
|     | 大熊町南台 (3m) ・・・・・ 121                         | 相関図                                       |
|     | 大熊町大野 (1m) · · · · · · 121                   | 1 いわき市小川・・・・・・ 141                        |
|     | 大熊町夫沢 (3m) ・・・・・ 122                         | 2 田村市都路馬洗戸・・・・・ 141                       |
|     | 双葉町山田 (3m) ・・・・・ 122                         | 3 広野町小滝平・・・・・・ 142                        |
|     |                                              |                                           |
|     | 双葉町郡山 (3m) ・・・・・ 123<br>双葉町新山 (3m) ・・・・・ 123 | 4 楢葉町木戸ダム・・・・・・ 142<br>5 楢葉町繁岡・・・・・・・ 143 |
|     |                                              |                                           |
|     | 双葉町上羽鳥 (3m) ・・・・ 124                         | 6 富岡町富岡・・・・・・・ 143                        |
|     | 浪江町請戸(1m)・・・・・ 124                           | 7 川内村下川内・・・・・・ 144                        |
|     | 浪江町棚塩(1m)・・・・・ 125                           | 8 大熊町大野・・・・・・ 144                         |
|     | 浪江町浪江 (3m) · · · · · · 125                   | 9 大熊町夫沢・・・・・・ 145                         |
|     | 浪江町幾世橋 (3m) • • • • 126                      | 10 双葉町郡山・・・・・・ 145                        |
|     | 浪江町大柿ダム (1m) ・・・・ 126                        | 11 浪江町幾世橋・・・・・・ 146                       |
|     | 浪江町大柿ダム(可搬1m)・・127                           | 12 浪江町大柿ダム・・・・・ 146                       |
|     | 浪江町南津島 (1m) ・・・・ 127                         | 13 葛尾村夏湯・・・・・・・ 147                       |
|     | 葛尾村夏湯 (1m)・・・・ 128                           | 14 南相馬市泉沢・・・・・・ 147                       |
|     | 南相馬市泉沢(1m)・・・・ 128                           | 15 南相馬市萱浜・・・・・・ 148                       |
|     | 南相馬市泉沢(可搬1m)・・・129                           | 16 飯舘村伊丹沢・・・・・・ 148                       |
| 36  | 南相馬市横川ダム (1m) ・・・129                         | 17 川俣町山木屋・・・・・・ 149                       |
|     |                                              |                                           |

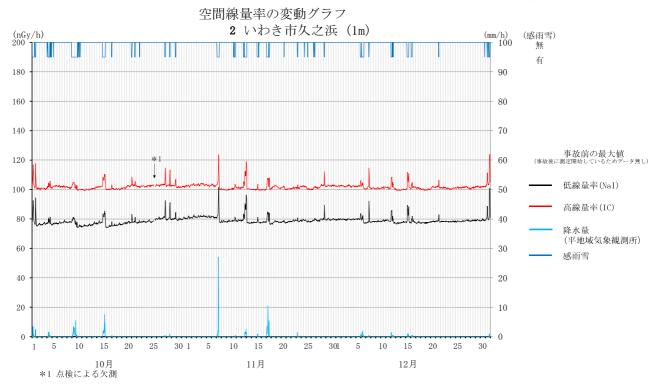
※ 図中の「事故前の最大値」は、平成23年3月10日までに観測された最大値

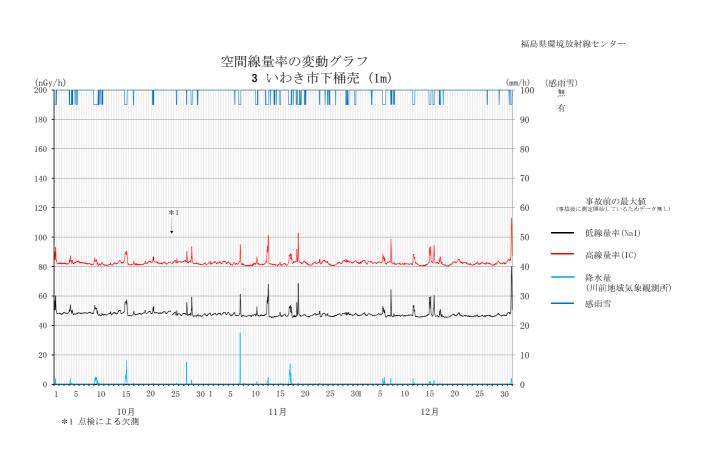

# 目次

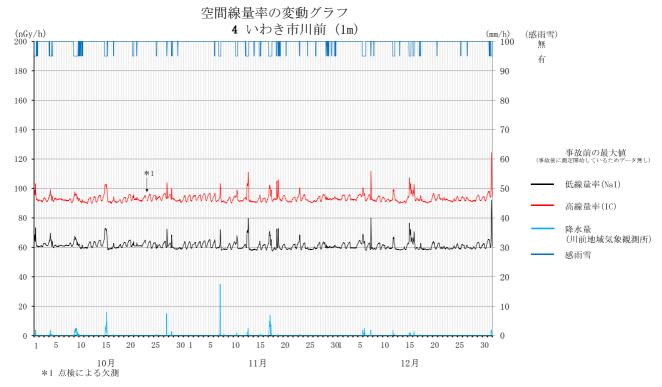
## 大気浮遊じん(集じん中測定)

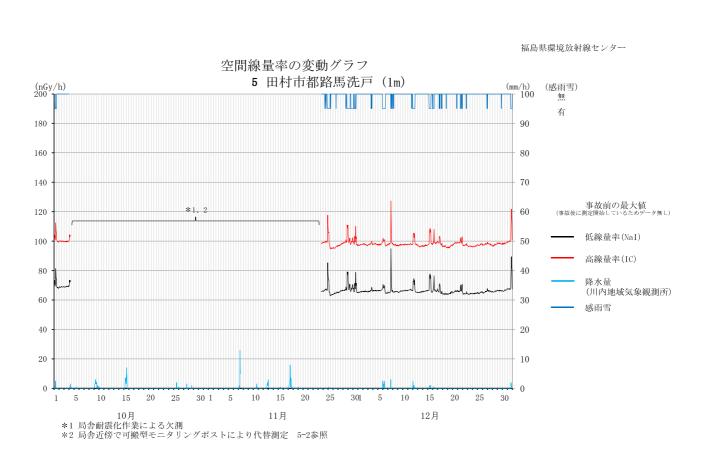

| 推移 | ,  |    |             |              |   |   |   |   |   |   |   |     |
|----|----|----|-------------|--------------|---|---|---|---|---|---|---|-----|
| 1  | いわ | すき | 小时          | IJ           | • | • | • | • | • | • | - | 150 |
| 2  | 田村 | 市者 | 『路          | 馬            | 洗 | 戸 | • | • | • | • | • | 150 |
| 3  | 広野 | 町小 | \滝          | <del>平</del> | • | • | • | • | • | • | • | 151 |
| 4  | 楢葉 | 町オ | ト戸          | ダ            | ム | • | • | • | • | • | • | 151 |
| 5  | 楢葉 | 町賃 | &岡          | •            | • | • | • | • | • | • | • | 152 |
| 6  | 富岡 | 町富 | 冒岡          | •            | • | • | • | • | • | • | • | 152 |
| 7  | 川内 | 村T | ۱۱ <b>۱</b> | 内            | • | • | • | • | • | • | • | 153 |
| 8  | 大熊 | 町丿 | 大野          | •            | • | • | • | • | • | • | • | 153 |
| 9  | 大熊 | 町ま | き沢          | •            | • | • | • | • | • | • | • | 154 |
| 10 | 双葉 | 町君 | ßЩ          | •            | • | • | • | • | • | • | • | 154 |
| 11 | 浪江 | 町剣 | き世          | 橋            | • | • |   |   | • | • | • | 155 |
| 12 | 浪江 | 町丿 | ト柿          | ダ            | ム | • | • | • | • | • | • | 155 |
| 13 | 葛尾 | 村夏 | 夏湯          | •            | • | • | • | • | • | • | • | 156 |
| 14 | 南相 | 馬市 | 「泉          | 沢            | • | • | • | • | • | • | • | 156 |
| 15 | 南相 | 馬市 | 亏萱          | 浜            | • | • |   |   | • | • | • | 157 |
| 16 | 飯舘 | 村信 | 押丹          | 沢            | • | • | • | • | • | • | - | 157 |
| 17 | 川俣 | 町山 | 山木          | 屋            | • | • | • | • | • | • | • | 158 |
| 18 | いわ | すき | 5久          | 之            | 浜 | • |   |   | • | • | • | 158 |
| 19 | いわ | すき | 下市          | 桶            | 売 | • | • | • | • | • | - | 159 |
| 20 | いわ | すき | 기           | 前            | • | • | • | • | • | • | • | 159 |
| 21 | 大熊 | 町庐 | 可畑          | •            | • | • | • | • | • | • | • | 160 |
| 22 | 双葉 | 町山 | 山田          | •            | • | • | • | • | • | • | • | 160 |
| 23 | 双葉 | 町親 | 斤山          | •            | • | • | • | • | • | • | • | 161 |
| 24 | 双葉 | 町上 | -羽          | 鳥            | • | • | • | • | • | • | • | 161 |
| 25 | 浪江 | 町南 | 有津          | 島            | • | • | • | • | • | • | • | 162 |
| 26 | 南相 | 馬市 | b横          | J۱۱          | ダ | 厶 | • | • | • | • | • | 162 |

## 空間線量率 (比較対照)

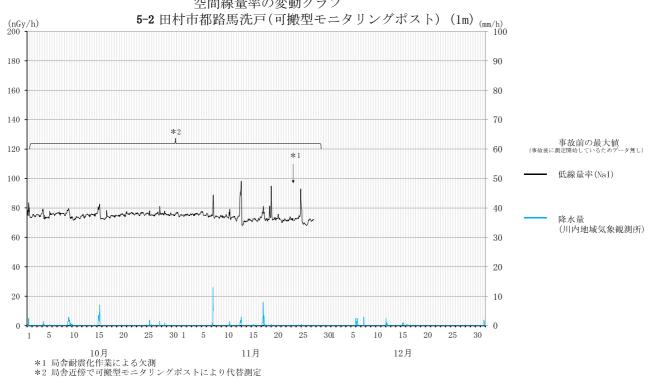

| 1 福島市杉妻(1m)・ | • | • | • | • |   | 163 |
|--------------|---|---|---|---|---|-----|
| 2 郡山市日和田(1m) | • | • | • | • |   | 163 |
| 3 いわき市平(1m)・ | • | • | • | • | • | 164 |





福島県環境放射線センター

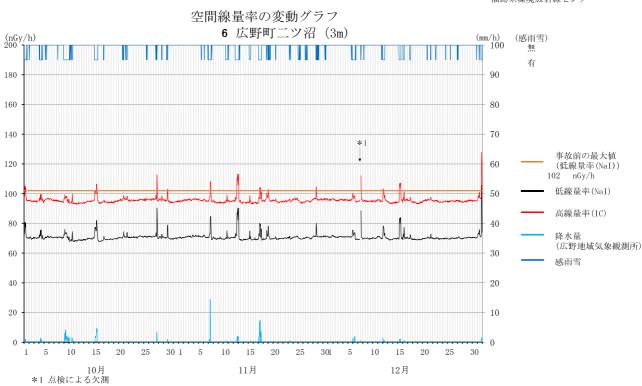


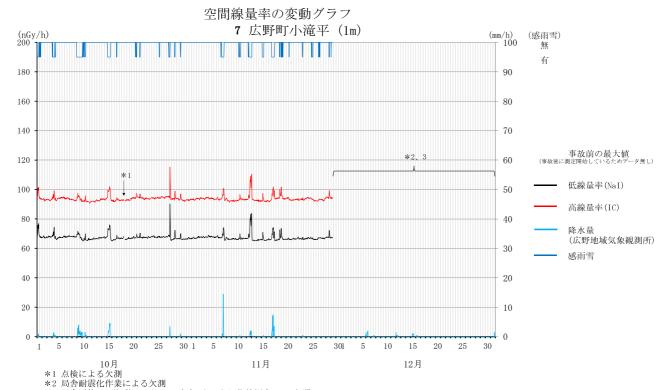

可搬型モニタリングポストには温度制御装置が装備されていないため線量率が気温の変動による影響を受けて日周期で変動する。



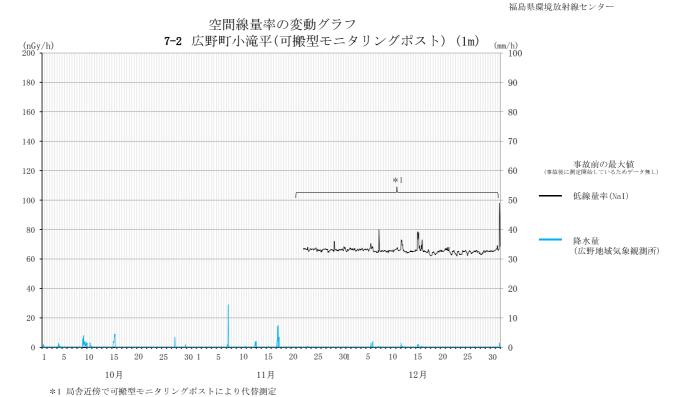




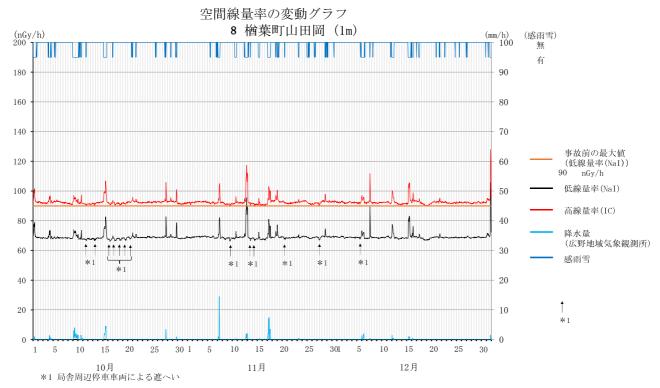



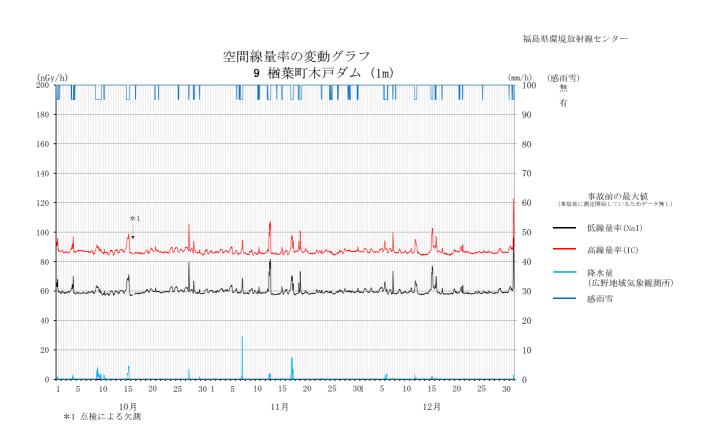


#### 空間線量率の変動グラフ

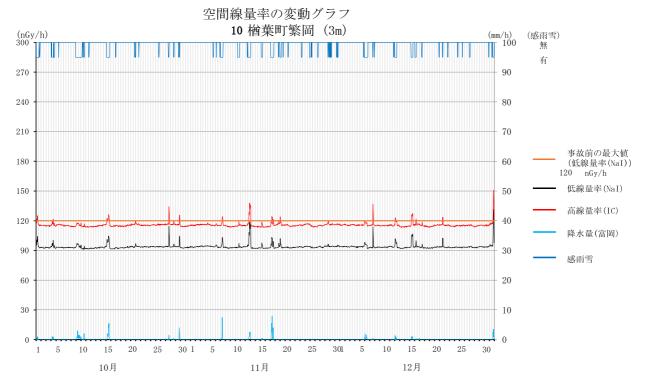


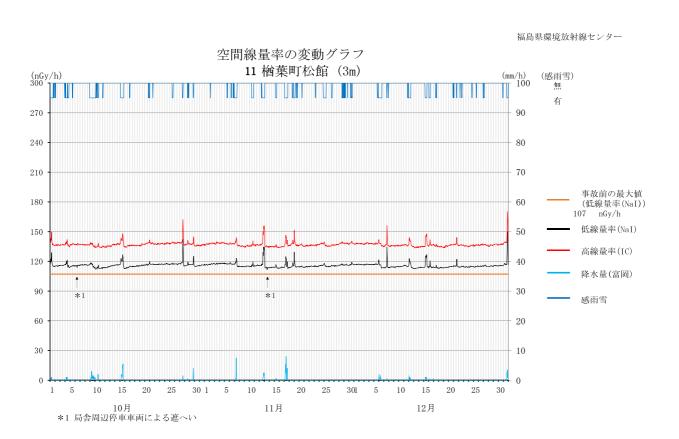

可搬型モニタリングポストには温度制御装置が装備されていないため線量率が気温の変動による影響を受けて日周期で変動する。

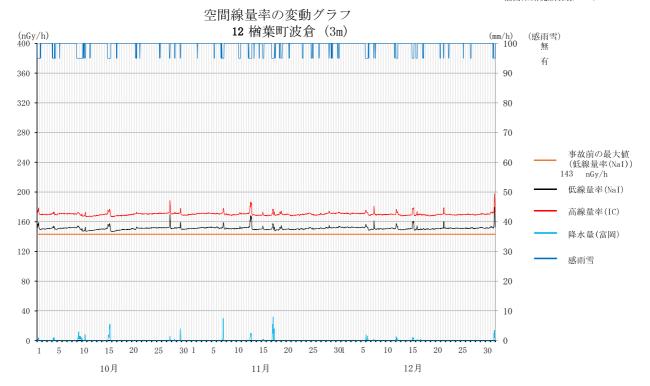
#### 福島県環境放射線センター



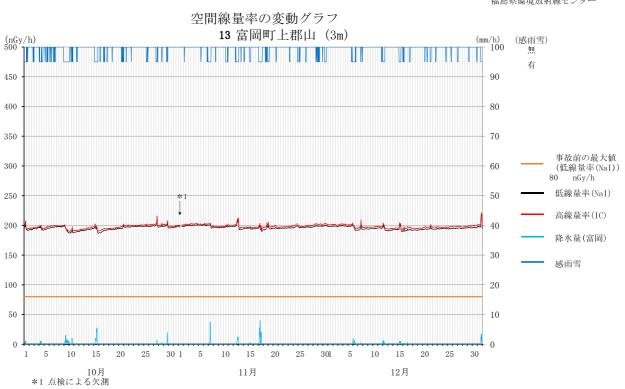



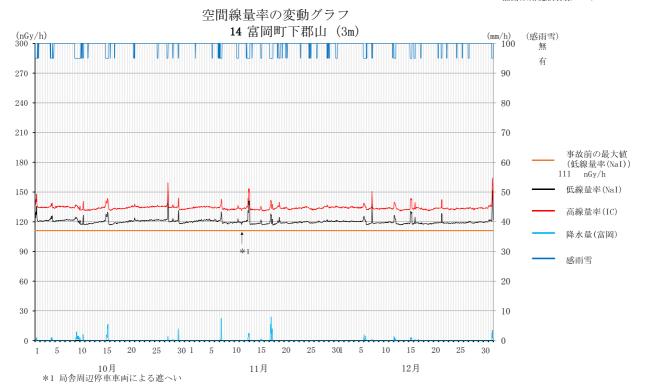


\*3 局舎近傍で可搬型モニタリングポストにより代替測定 7-2参照



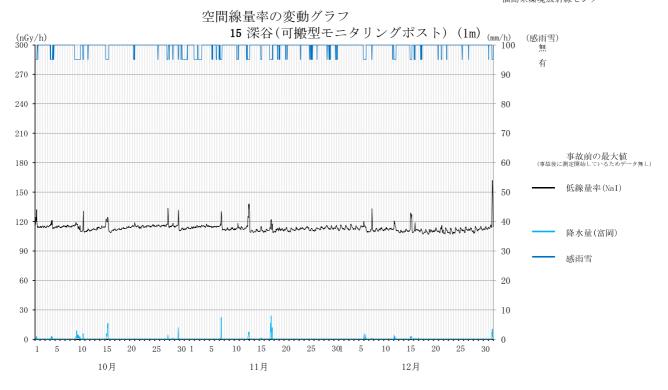


可搬型モニタリングポストには温度制御装置が装備されていないため線量率が気温の変動による影響を受けて日周期で変動する。



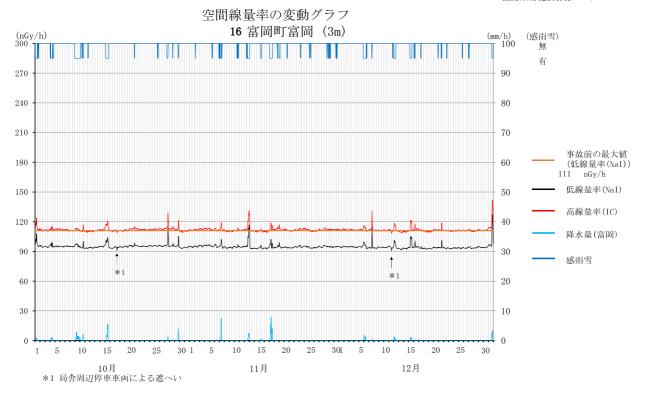


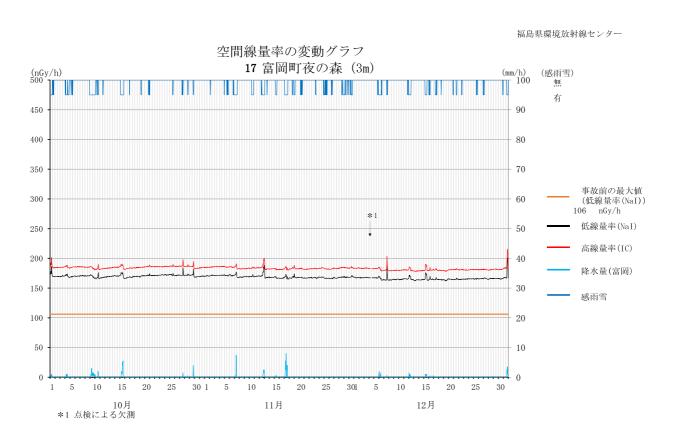



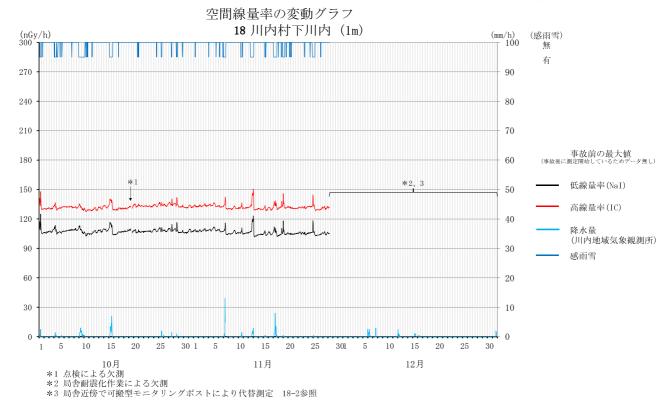


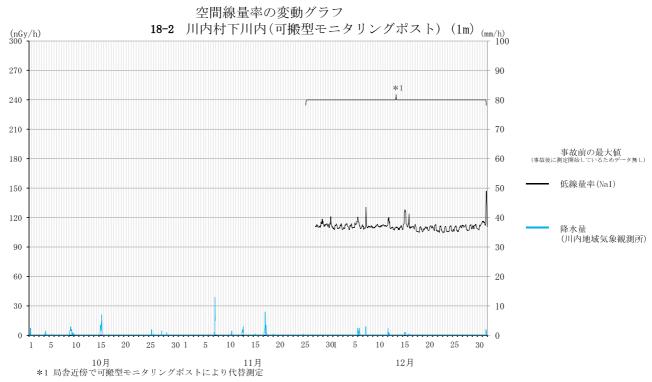


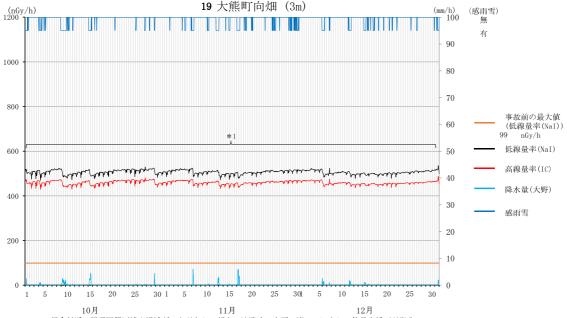







可搬型モニタリングポストには温度制御装置が装備されていないため、線量率が気温の変動による影響を受けて日周期で変動する。





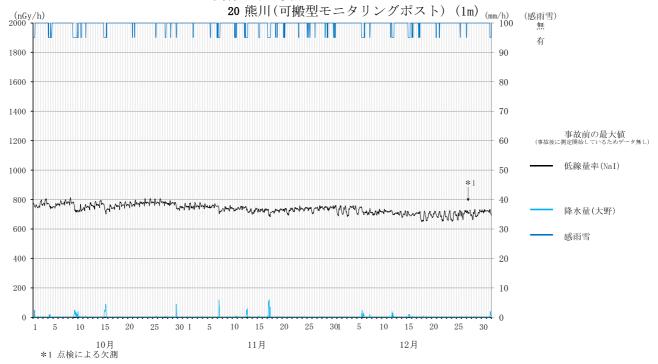



福島県環境放射線センター



可搬型モニタリングポストには温度制御装置が装備されていないため線量率が気温の変動による影響を受けて口周期で変動する。

#### 空間線量率の変動グラフ

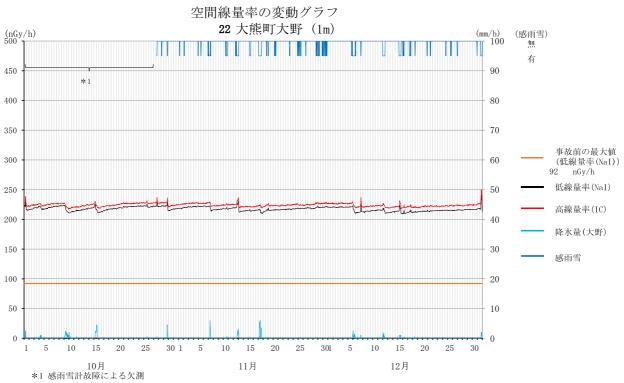


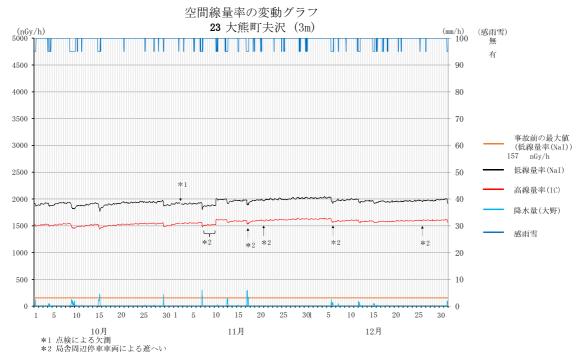

\*1 局舎付近に帰還困難区域入退域ゲートがあり、朝夕の渋滯時の車両の遮へいにより、線量率低下が発生

電離箱式検出器 (IC) は高エネルギーの宇宙線についても測定できることから、線量率が低レベルのときの測定値はNaI (TI) シンチレーション式検出器より30nGy/h程度高くなる。また電離箱式検出器は、検出器の形状が球形であり方向特性が良好である一方、NaI (TI) シンチレーション式検出器の形状は2inø×2inの円柱状であるため、鉛直方向の方向特性を1とした場合、90度方向では1.1程度となる。線量率が数百nGy/h以上の地点では、福島第一原子力発電所の事故により沈着した5c=134及び5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c=137はよび5c

福島県環境放射線センター

#### 空間線量率の変動グラフ

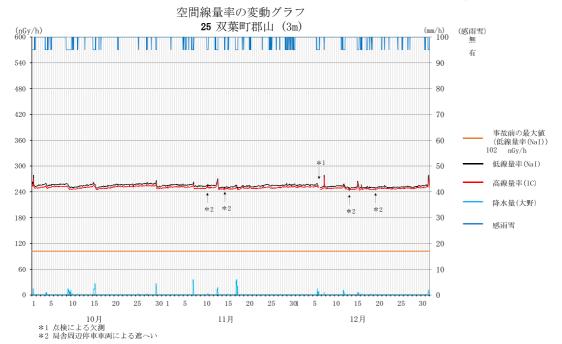




可搬型モニタリングポストには温度制御装置が装備されていないため、線量率が気温の変動による影響を受けて口周期で変動する。

#### 空間線量率の変動グラフ 21 大熊町南台 (3m) (nGy/h) 8000 (感雨雪) 無 (mm/h) 100 有 90 7200 6400 80 70 5600 事故前の最大値 60 (低線量率(NaI)) 133 nGy/h 4800 低線量率(NaI) 4000 50 高線量率(IC) 3200 40 降水量(大野) 2400 30 威雨雪 1600 20 800 10 0 10 15 15 10月 \*1 検出器周辺に滞留した人による遮へい 12月 11月

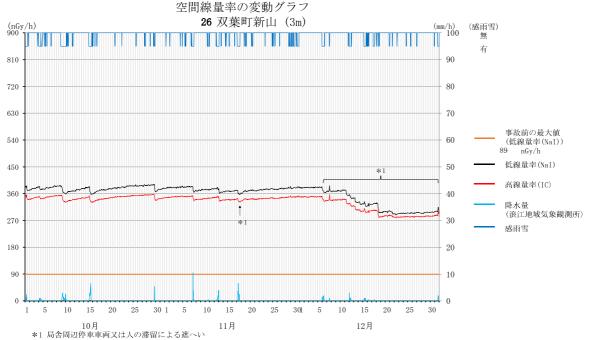
電離箱式検出器(IC)は高エネルギーの宇宙線についても測定できることから、線量率が低レベルのときの測定値はNaI(TI)シンチレーション式検出器より30nGy/h程度高くなる。また電離箱式検出器は、検出器の形状が球形であり方向特性が良好である一方、NaI (TI)シンチレーション式検出器の形状は2ine×2inの円柱状であるため、鉛直方向の方向特性を1とした場合、90度方向では1.1程度となる。線量率が数百nGy/h以上の地点では、福島第一原子力発電所の事故により沈着したCs-134及びCs-137による地表面方向(90度から180度)からの放射線が大部分を占めるため、検出器の方向特性の違いによる影響がより顕著に現れ、電離箱式検出器と比較してNaI(TI)シンチレーション式検出器の測定値が高い傾向となる。

#### 福島県環境放射線センター

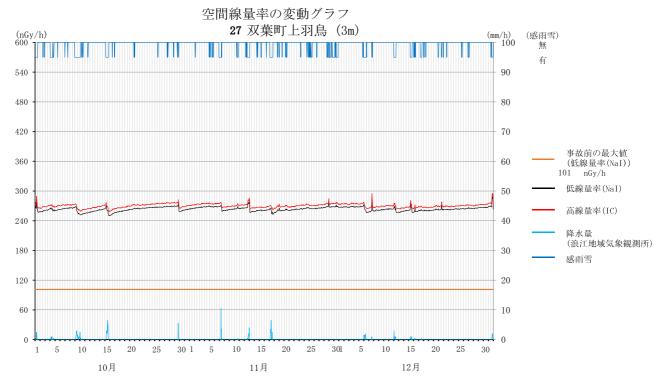




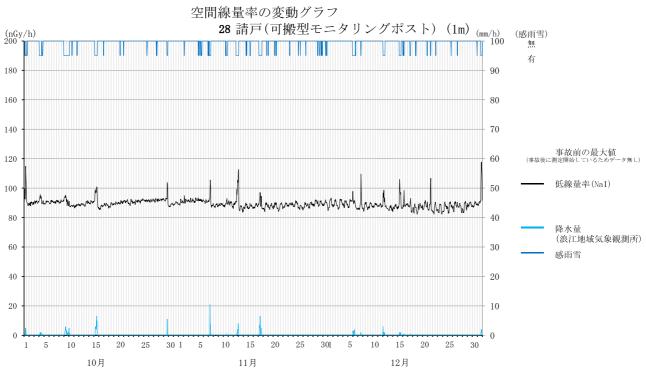

電離箱式検出器(IC)は高エネルギーの宇宙線についても測定できることから、線量率が低レベルのときの測定値はNaI(TI)シンチレーション式検出器より30nGy/h程度高くなる。また電離箱式検出器は、検出器の形状が球形であり方向特性が良好である一方、NaI(TI)シンチレーション式検出器の形状は2inφ×2inの円柱状であるため、鉛直方向の方向特性を1とした場合、90度方向では1.1程度となる。線量率が数百nGy/h以上の地点では、福島第一原子力発電所の事故により状着したCs-134及びCs-137による地表面方向「90度から180度)からの放射線が大部分を占めるため、検出器の方向特性の違いによる影響がより顕著に現れ、電離箱式検出器と比較してNaI(TI)シンチレーション式検出器の測定値が高い傾向となる。


#### 福島県環境放射線センター 空間線量率の変動グラフ 24 双葉町山田 (3m) (感雨雪) 無 有 90 80 4800 70 4200 事故前の最大値 60 (低線量率(NaI)) 105 nGy/h 3600 低線量率(NaI) 3000 50 高線量率(IC) 2400 40 降水量(大野) 30 感雨雪 20 600 10 10 15 20 30 1 10 15 10 15 20 25 10月 \*1 点検による欠測 11月 12月

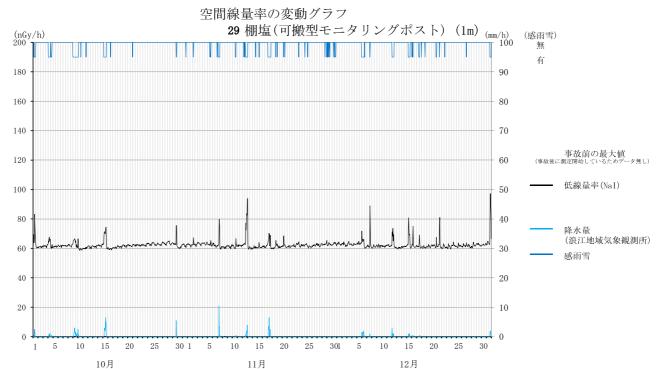
電離箱式検出器(IC)は高エネルギーの宇宙線についても測定できることから、線量率が低レベルのときの測定値はNaI(ITI)シンチレーション式検出器より30nGy/h程度高くなる。また電離箱式検出器は、検出器の形状が球形であり方向特性が良好である一方、NaI(ITI)シンチレーション式検出器の形状は2inφ×2inの円柱状であるため、鉛直方向の方向特性を1とした場合、90度方向では1.1程度となる。線量率が数百nGy/h以上の地点では、福島第一原子方発電所の事故により光着したCs-134及びCS-137による地表面方向(90度から180度)からの放射線が大部分を占めるため、検出器の方向特性の違いによる影響がより顕著に現れ、電離箱式検出器と比較してNaI(ITI)シンチレーション式検出器の測定値が高い傾向となる。



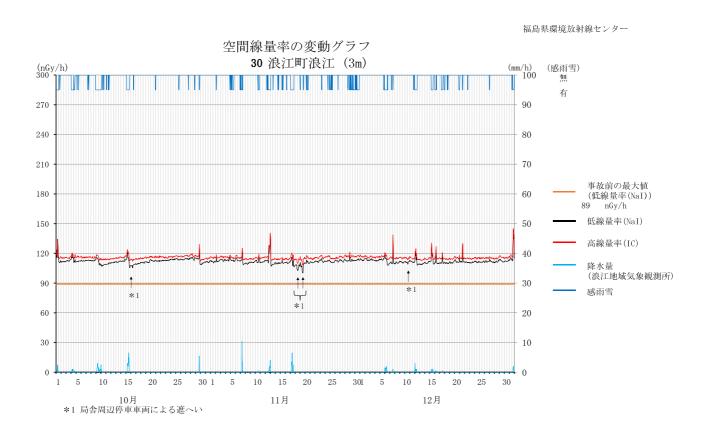

電離箱式検出器 (IC) は高エネルギーの宇宙線についても測定できることから、線量率が低レベルのときの測定値はNaI (TI) シンチレーション式検出器より30mGy/h程度高くなる。また電離箱式検出器は、検出器の形状が球形であり方向特性が良好である一方、NaI (TI) シンチレーション式検出器の形状は2in φ×2inの円柱状であるため、鉛直方向の方向特性を1とした場合、90度方向では、1程度となる。銀量率が数百mGy/h以上の地点では、福島第一原子力発電所の事故により沈着したCS-134及びCS-137による地表而方向(90度から180度)からの放射線が大部分を占めるため、検出器の方向特性の違いによる影響がより顕著に現れ、電離箱式検出器と比較してNaI (TI) シンチレーション式検出器の測定値が高い傾向となる。

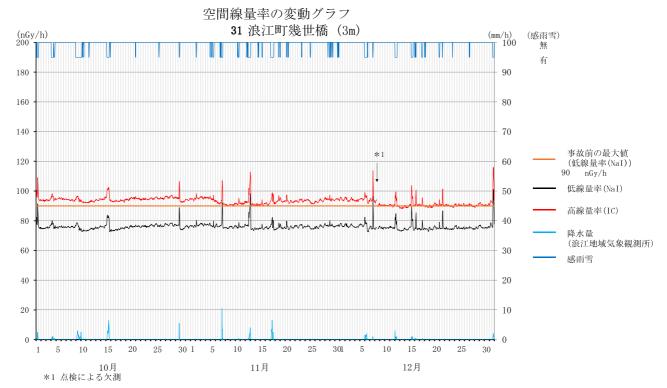

## 福島県環境放射線センター




電離箱式検出器(IC)は高エネルギーの宇宙線についても測定できることから、線量率が低レベルのときの測定値はNaI(IT)シンチレーション式検出器より30nGy/h程度高くなる。また電離箱式検出器は、検出器の形状が球形であり方向特性が良好である一方、NaI (TI)シンチレーション式検出器の形状は2inφ×2inの円柱状であるため、鉛直方向の方向特性を1とした場合、90度方向では1.1程度となる。線量率が数百nGy/h以上の地点では、福島第一原子力発電所の事故により洗着したCs-134及 CVCs-137による地表面方向(90度から180度)からの放射線が大部分を占めるため、検出器の方向特性の違いによる影響がより顕著に現れ、電離箱式検出器と比較してNaI(II)シンチレーション式検出器の測定値が高い傾向となる。





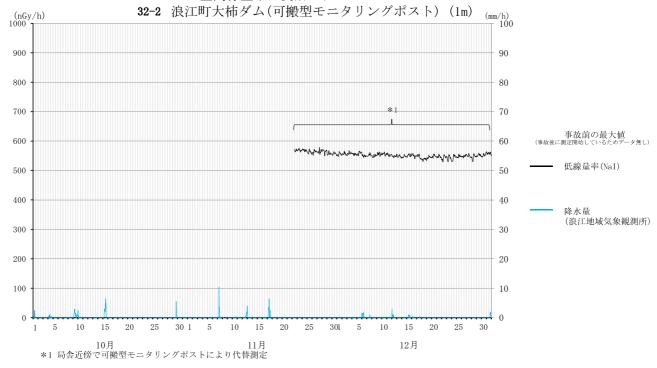




可搬型モニタリングポストには温度制御装置が装備されていないため線量率が気温の変動による影響を受けて日周期で変動する。



可搬型モニタリングポストには温度制御装置が装備されていないため線量率が気温の変動による影響を受けて日周期で変動する。

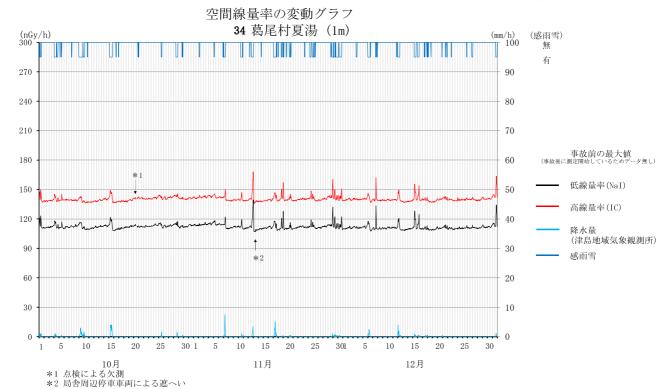


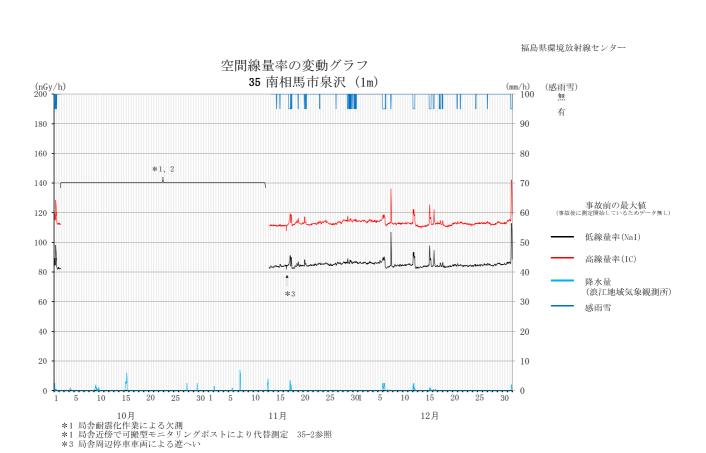



# 福島県環境放射線センター

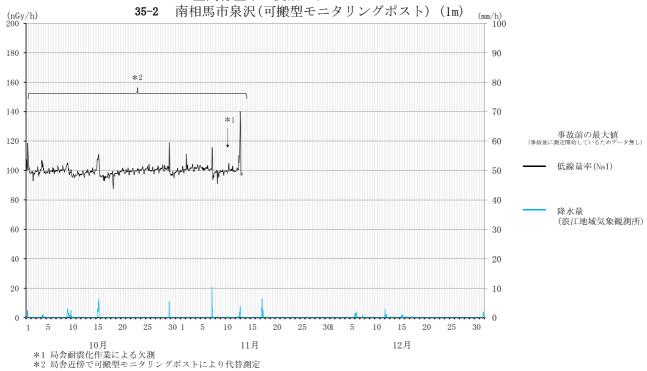


電離箱式検出器(IC)は高エネルギーの宇宙線についても測定できることから、線量率が低レベルのときの測定値はNaI(TI)シンチレーション式検出器より30nGy/h程度高くなる。また電離箱式検出器は、検出器の形状が球形であり方向特性が良好である一方、NaI(TI)シンチレーション式検出器の形状は2inφ×2inの円柱状であるため、鉛直方向の方向特性を1とした場合、90度方向では1. I程度となる。線量率が数百nGy/h以上の地点では、福島第一原子力発電所の事故により状着とたcs-134及びCS-137による地表面方向(90度から180度)からの放射線が大部分を占めるため、検出器の方向特性の違いによる影響がより顕著に現れ、電離箱式検出器と比較してNaI(TI)シンチレーション式検出器の測定値が高い傾向となる。


#### 空間線量率の変動グラフ

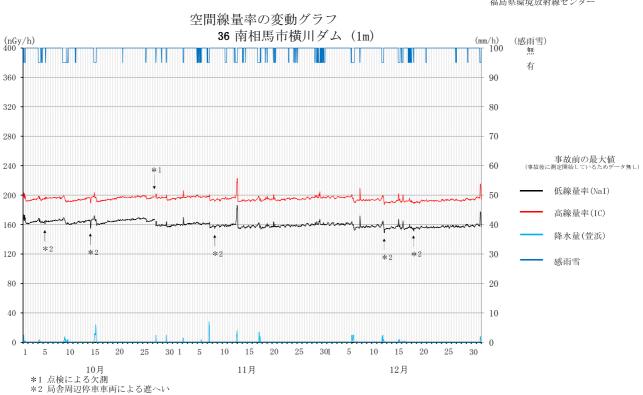


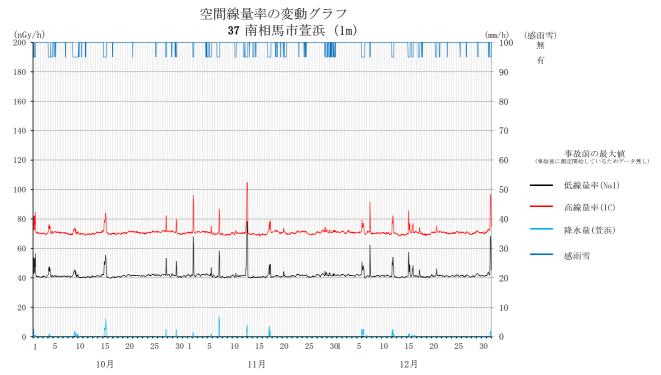

可搬型モニタリングポストには温度制御装置が装備されていないため線量率が気温の変動による影響を受けて日周期で変動する。

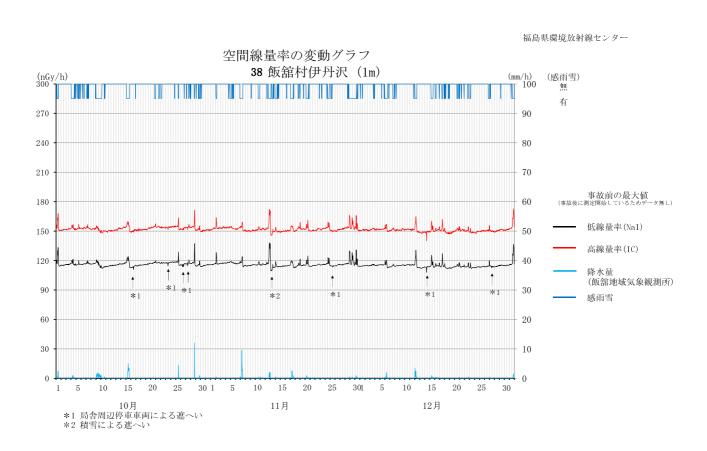

#### 福島県環境放射線センター

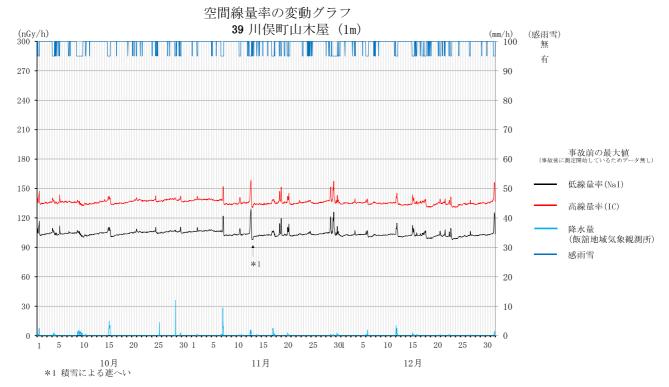




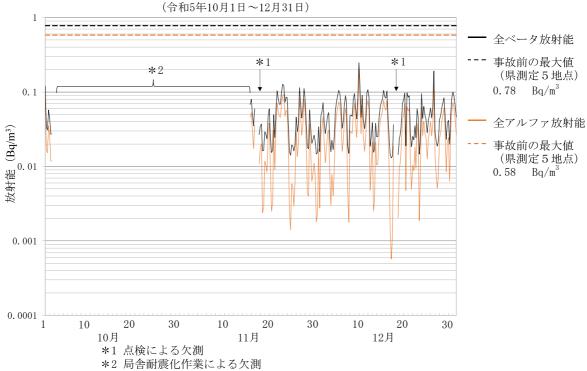




#### 空間線量率の変動グラフ





可搬型モニタリングポストには温度制御装置が装備されていないため線量率が気温の変動による影響を受けて日周期で変動する。

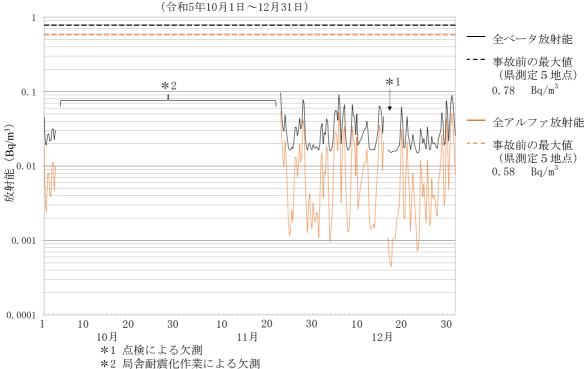
#### 福島県環境放射線センター









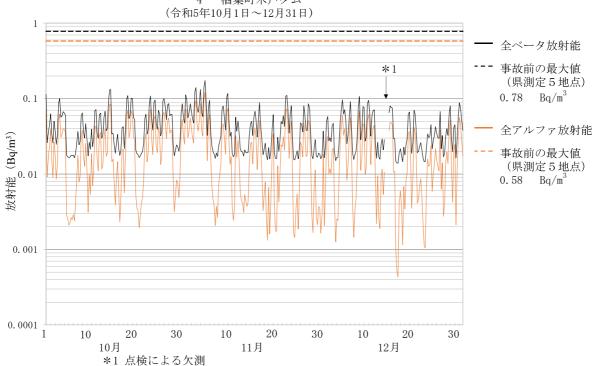


(6時間連続集じん・6時間放置後測定) 1 いわき市小川 (全和5年10月1日~12月31日)



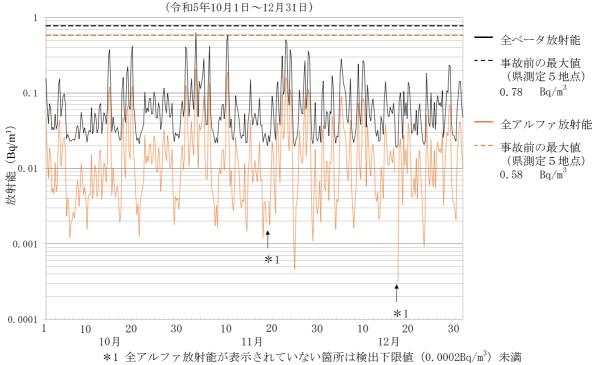
#### 福島県環境放射線センター

#### 大気浮遊じんの全アルファ及び全ベータ放射能の推移

(6時間連続集じん・6時間放置後測定) 2 田村市都路馬洗戸 (令和5年10月1日~12月31日)



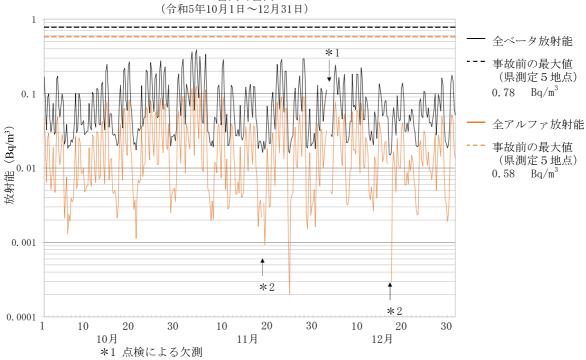

(6時間連続集じん・6時間放置後測定) 3 広野町小滝平




#### 福島県環境放射線センター

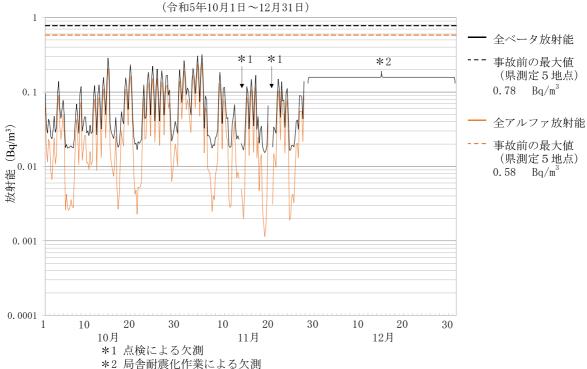
#### 大気浮遊じんの全アルファ及び全ベータ放射能の推移




(6時間連続集じん・6時間放置後測定) 5 楢葉町繁岡



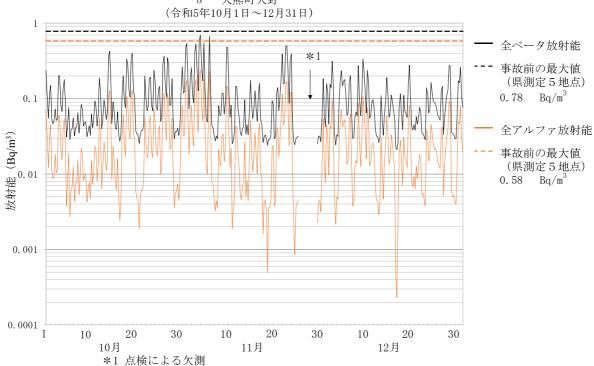
#### 福島県環境放射線センター


#### 大気浮遊じんの全アルファ及び全ベータ放射能の推移

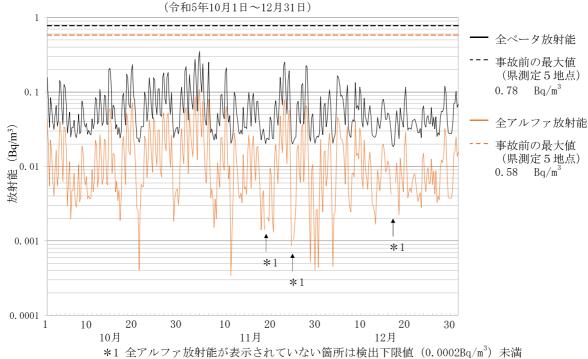
(6時間連続集じん・6時間放置後測定) 6 富岡町富岡



\*2 全アルファ放射能が表示されていない箇所は検出下限値(0.0002Bq/m³)未満


(6時間連続集じん・6時間放置後測定) 7 川内村下川内 (全和5年10月1日 - 12月21日)

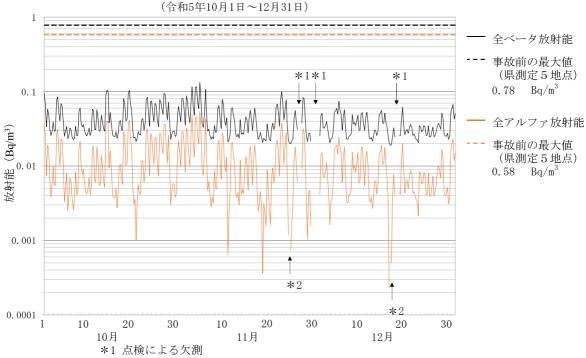



#### 福島県環境放射線センター

### 大気浮遊じんの全アルファ及び全ベータ放射能の推移

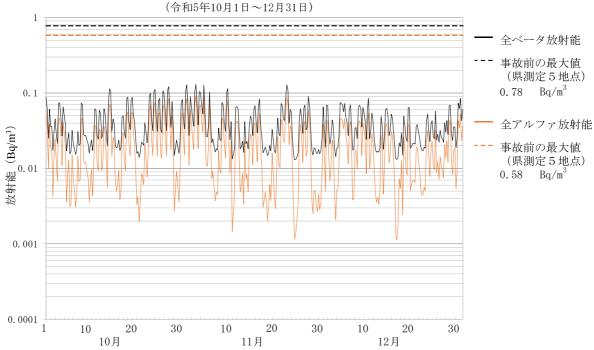
(6時間連続集じん・6時間放置後測定) 8 大熊町大野




(6時間連続集じん・6時間放置後測定) 9 大熊町夫沢



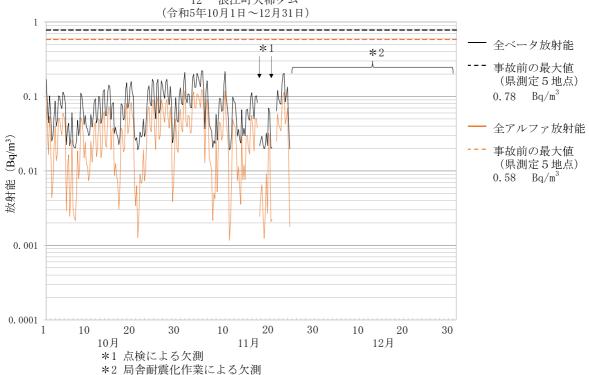
#### 福島県環境放射線センター


#### 大気浮遊じんの全アルファ及び全ベータ放射能の推移

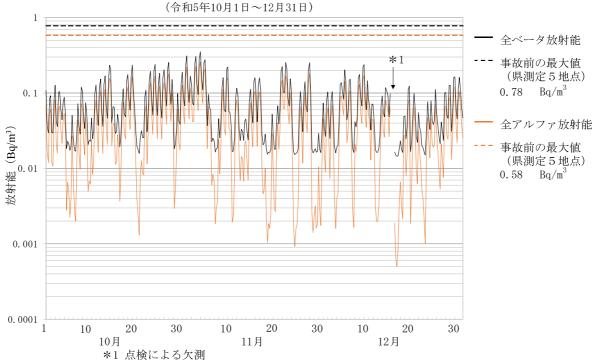
(6時間連続集じん・6時間放置後測定) 10 双葉町郡山 (全転行に10円11円 10円21円)



\*2 全アルファ放射能が表示されていない箇所は検出下限値(0.0002Bq/m³)未満


(6時間連続集じん・6時間放置後測定) 11 浪江町幾世橋 (全和5年10月1日 - 12月21日)

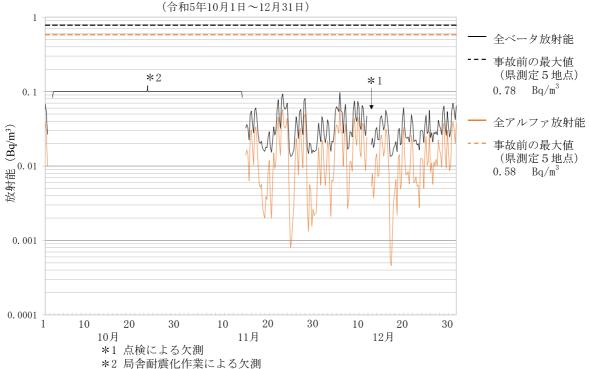



#### 福島県環境放射線センター

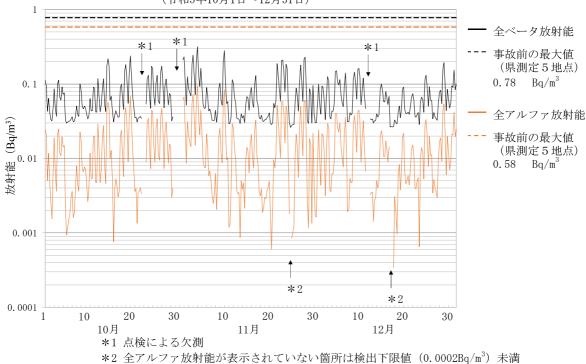
### 大気浮遊じんの全アルファ及び全ベータ放射能の推移

(6時間連続集じん・6時間放置後測定) 12 浪江町大柿ダム (合和5年10月1日~12月31日)




(6時間連続集じん・6時間放置後測定) 13 葛尾村夏湯 (全和5年10月1日 - 12月21日)

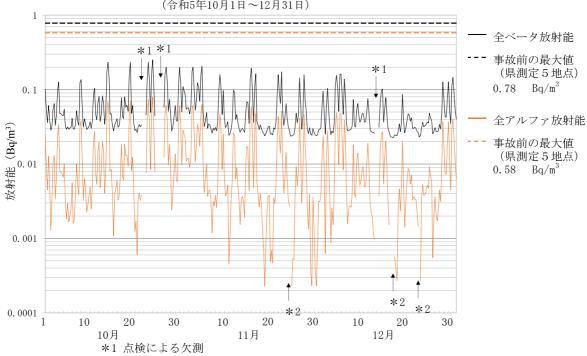



#### 福島県環境放射線センター

#### 大気浮遊じんの全アルファ及び全ベータ放射能の推移

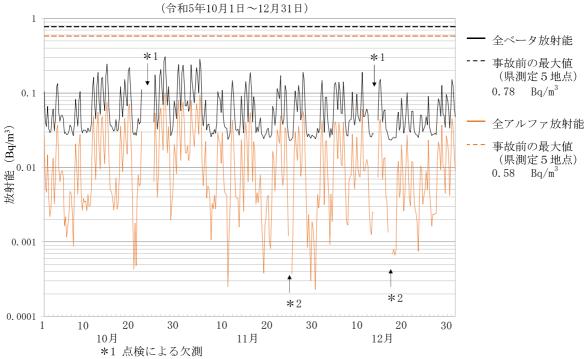
(6時間連続集じん・6時間放置後測定) 14 南相馬市泉沢 (令和5年10月1日~12月31日)




(6時間連続集じん・6時間放置後測定) 15 南相馬市萱浜 (令和5年10月1日~12月31日)

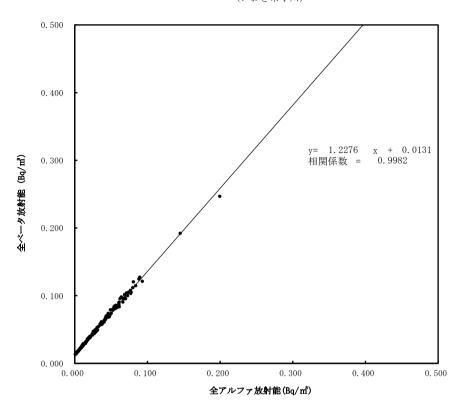


#### 福島県環境放射線センター


#### 大気浮遊じんの全アルファ及び全ベータ放射能の推移

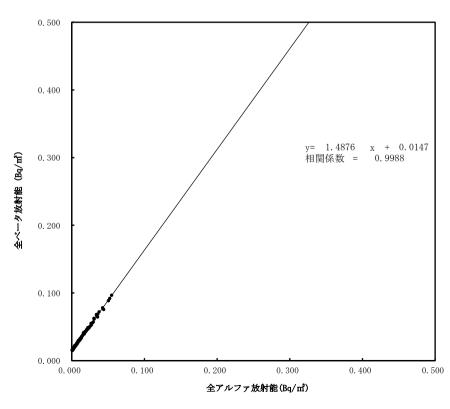
(6時間連続集じん・6時間放置後測定) 16 飯舘村伊丹沢 (令和5年10月1日~12月31日)



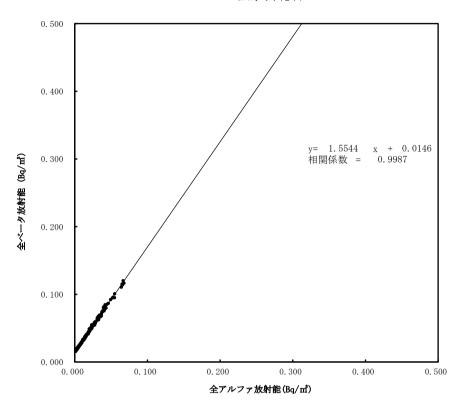

\*2 全アルファ放射能が表示されていない箇所は検出下限値(0.0002Bq/m³)未満

(6時間連続集じん・6時間放置後測定) 17 川俣町山木屋

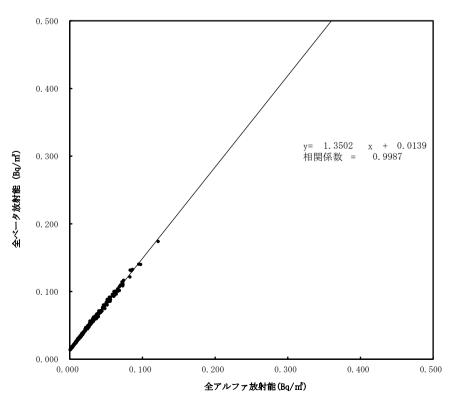



## 大気浮遊じんの全アルファ・全ベータ放射能の相関図

# (6時間連続集じん・6時間放置後) (令和5年10月~12月) (いわき市小川)

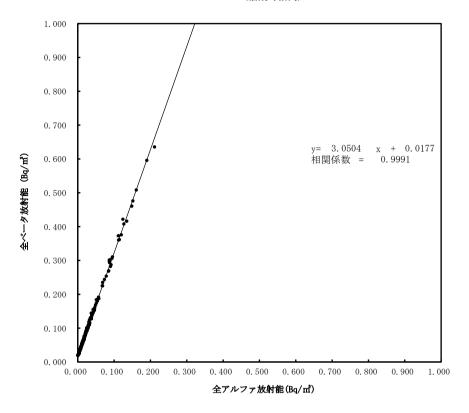



## 大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (今和5年10月~12月)

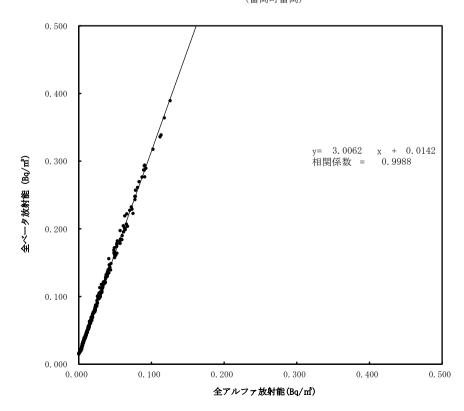

(田村市都路馬洗戸)



# 大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (令和5年10月~12月) (広野町小滝平)

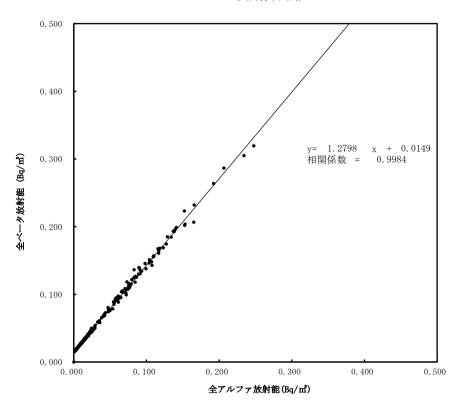



大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (令和5年10月~12月) (楢葉町木戸ダム)

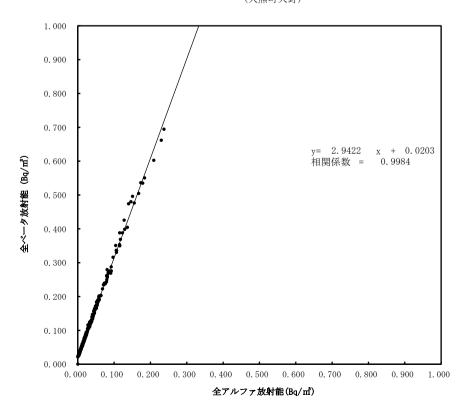



## 大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後)

(令和5年10月~12月) (楢葉町繁岡)

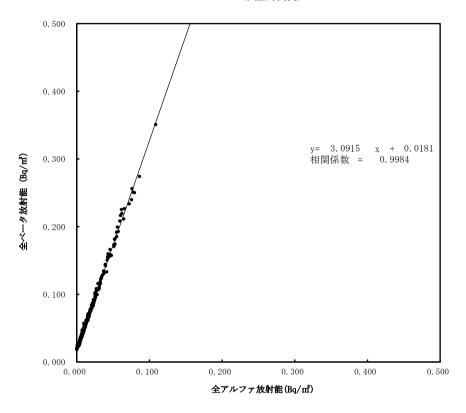



大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (令和5年10月~12月) (富岡町富岡)

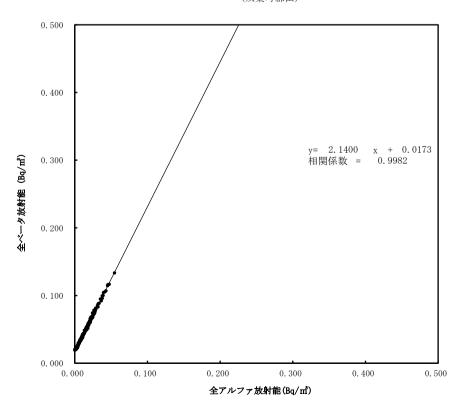



## 大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後)

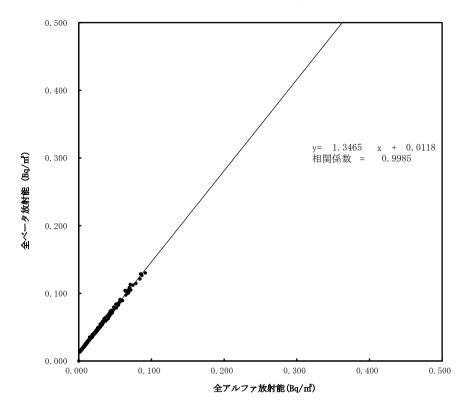
(令和5年10月~12月) (川内村下川内)



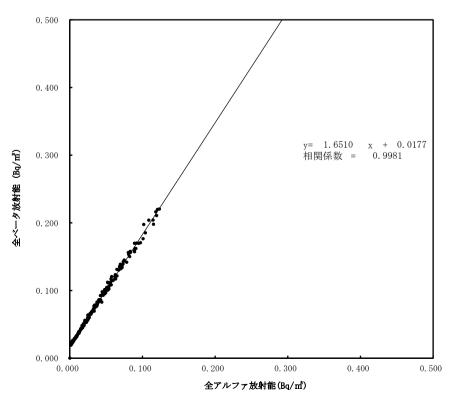

大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (令和5年10月~12月) (大熊町大野)



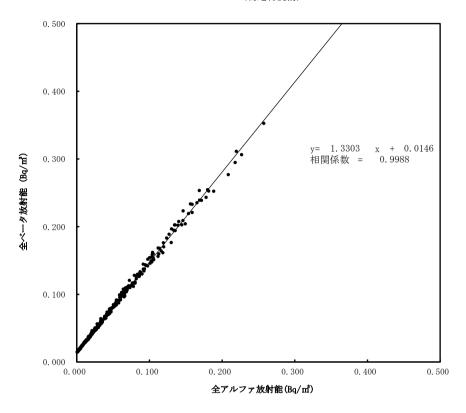

## 大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後)


(令和5年10月~12月) (大熊町夫沢)

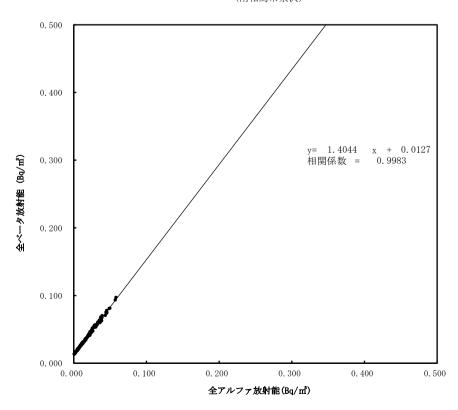



大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (令和5年10月~12月) (双葉町郡山)

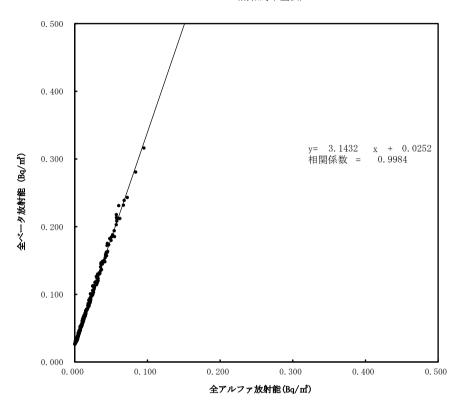



# 大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (令和5年10月~12月) (浪江町幾世橋)

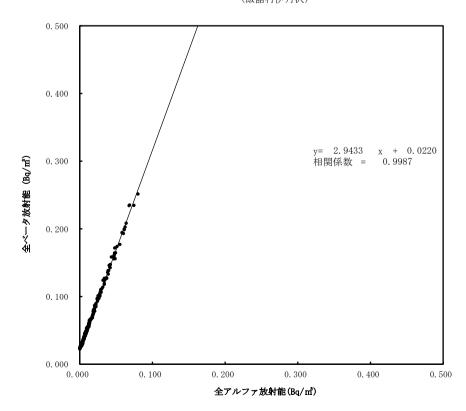



大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (令和5年10月~12月) (浪江町大柿ダム)

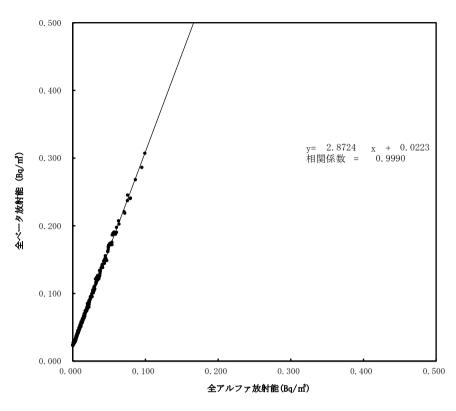



# 大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (令和5年10月~12月) (葛尾村夏湯)

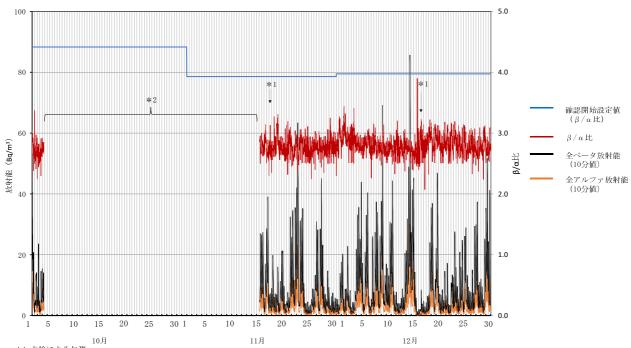



大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (令和5年10月~12月) (南相馬市泉沢)




# 大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (令和5年10月~12月) (南相馬市萱浜)

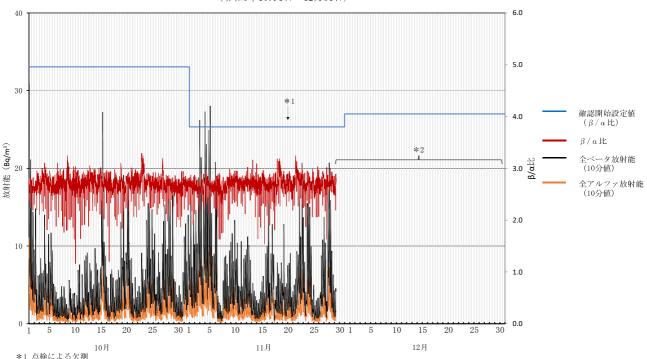



大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (令和5年10月~12月) (飯舘村伊丹沢)

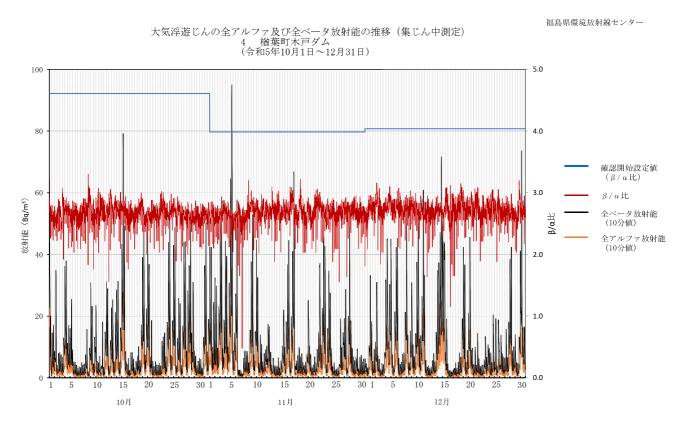


# 大気浮遊じんの全アルファ・全ベータ放射能の相関図 (6時間連続集じん・6時間放置後) (令和5年10月~12月) (川俣町山木屋)



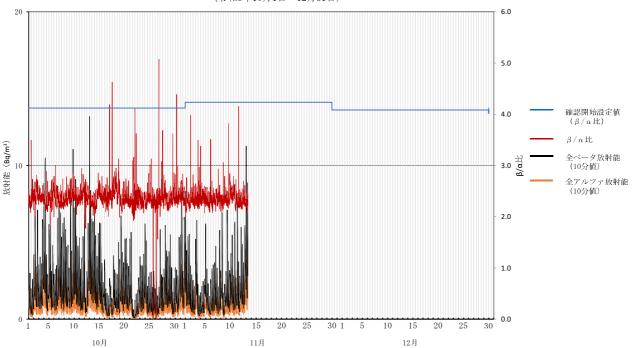

## 大気浮遊じんの全アルファ及び全ベータ放射能の推移(集じん中測定) 1 いわき市小川 (令和5年10月1日~12月31日)



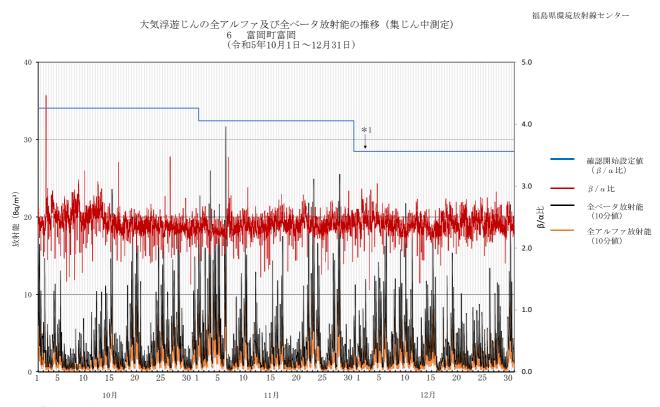



\*1 点検による欠測 \*2 局舎耐震化作業による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ペータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより  $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。

#### 大気浮遊じんの全アルファ及び全ベータ放射能の推移(集じん中測定) 3 広野町小滝平 (令和5年10月1日~12月31日)

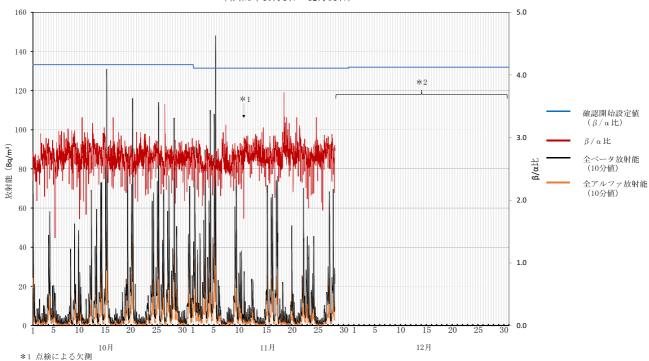



10月 11月 12月 \*\*1 点検による欠測 \*\*2 局舎耐震化作業による欠測 \*\*2 局舎耐震化作業による欠測 \*\*3 気舎耐震化作業による欠測 る紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$  比が高く算出される場合があること、また、放射能濃度が低いことにより  $\beta/\alpha$  比のばらつきが大きくなる場合があるとされています。

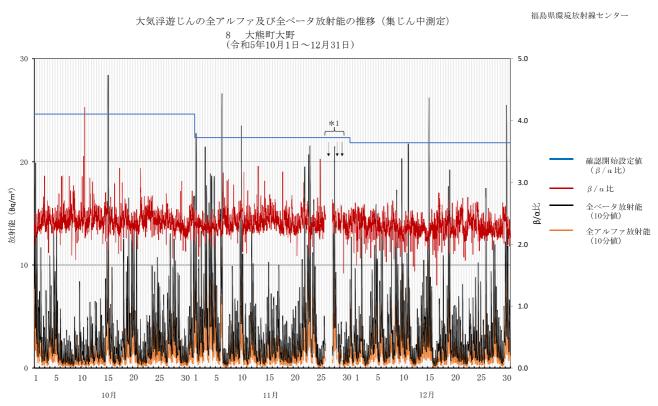



ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。

## 大気浮遊じんの全アルファ及び全ベータ放射能の推移(集じん中測定) 5 楢葉町繁岡 (令和5年10月1日~12月31日)



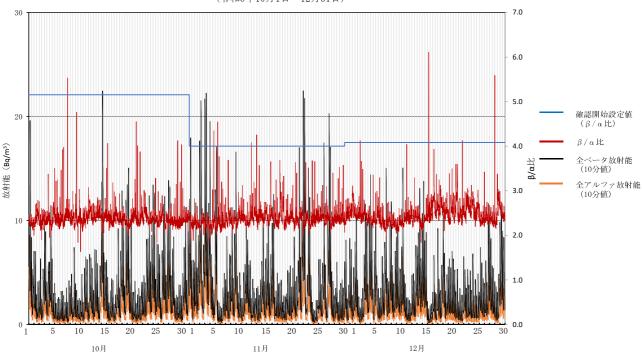

ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。




\*1 停電による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ペータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより  $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。

### 大気浮遊じんの全アルファ及び全ベータ放射能の推移(集じん中測定) 7 川内村下川内 (令和5年10月1日~12月31日)



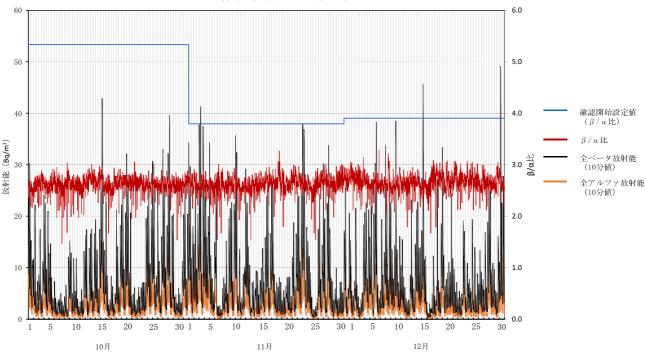

\*1  $\pi$ (駅による)人間 \*\*2 局舎耐震化作業による欠測 \*\*2 局舎耐震化作業による欠測 \*\*2 局舎耐震化作業による欠測 \*\*2 局舎耐震化作業による欠測 \*\*5 り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ペータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$  比が高く算出される場合があること、また、放射能濃度が低いことにより  $\beta/\alpha$  比のばらつきが大きくなる場合があるとされています。



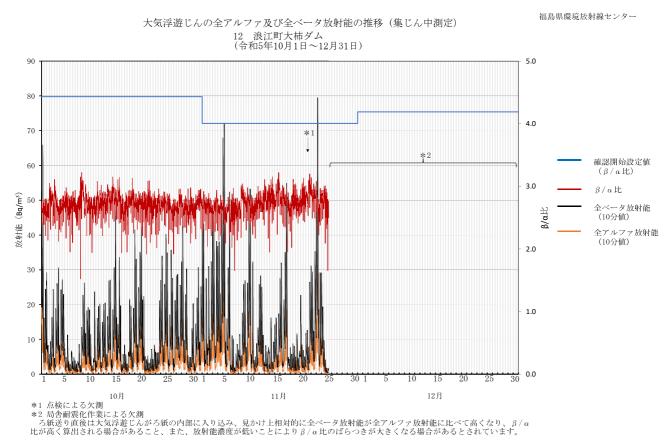

\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$  比が高く算出される場合があること、また、放射能濃度が低いことにより  $\beta/\alpha$  比のばらつきが大きくなる場合があるとされています。



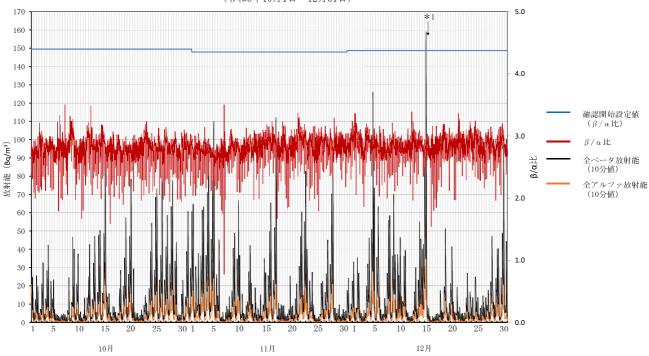
### 大気浮遊じんの全アルファ及び全ベータ放射能の推移(集じん中測定) 9 大熊町夫沢 (令和5年10月1日~12月31日)



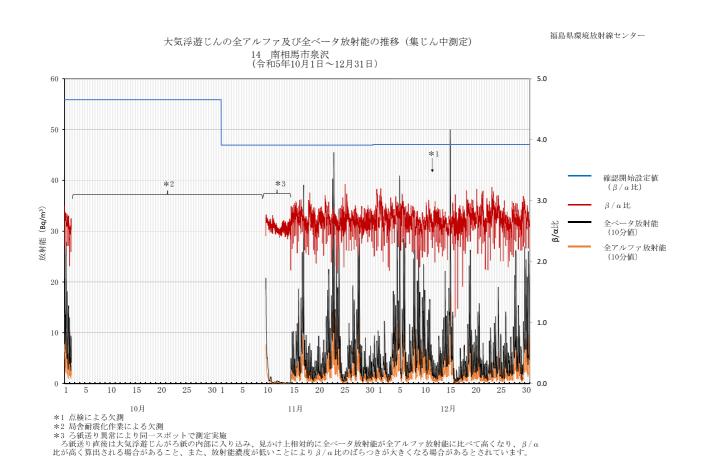

ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。



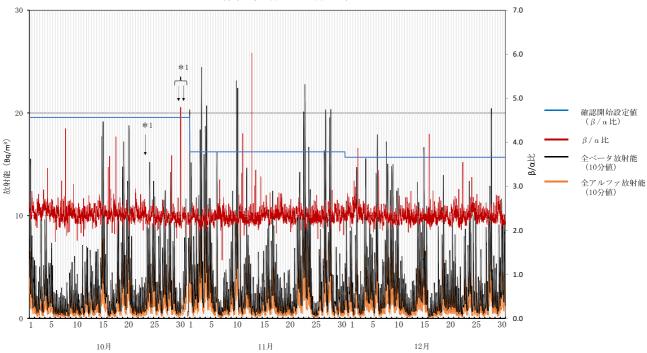

\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$  比が高く算出される場合があること、また、放射能濃度が低いことにより  $\beta/\alpha$  比のばらつきが大きくなる場合があるとされています。


## 大気浮遊じんの全アルファ及び全ベータ放射能の推移 (集じん中測定) 11 浪江町幾世橋 (令和5年10月1日~12月31日)

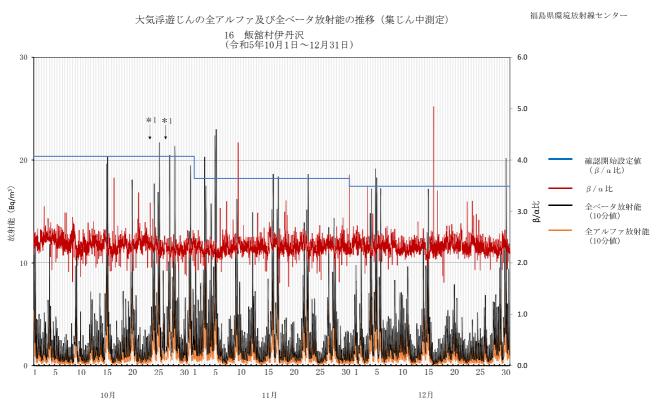



ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。



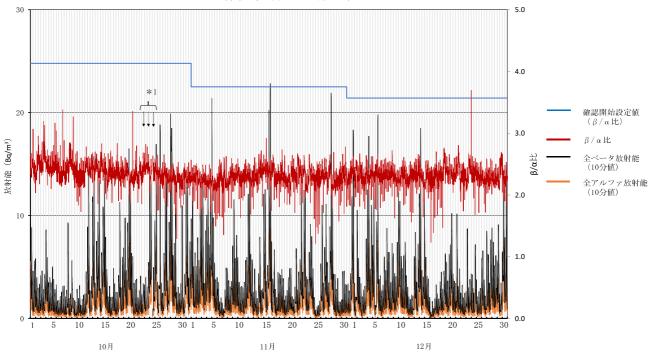

## 大気浮遊じんの全アルファ及び全ベータ放射能の推移(集じん中測定) 13 葛尾村夏湯 (令和5年10月1日~12月31日)



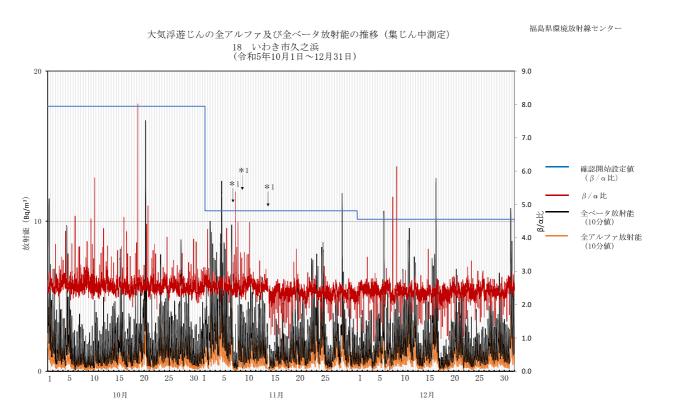

\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$  比が高く算出される場合があること、また、放射能濃度が低いことにより  $\beta/\alpha$  比のばらつきが大きくなる場合があるとされています。



### 大気浮遊じんの全アルファ及び全ベータ放射能の推移(集じん中測定) 15 南相馬市萱浜 (令和5年10月1日~12月31日)

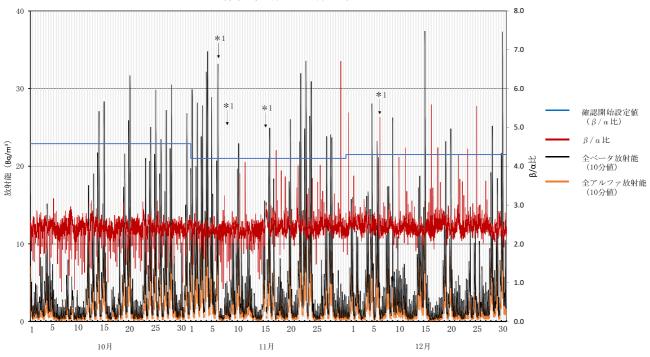



\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。

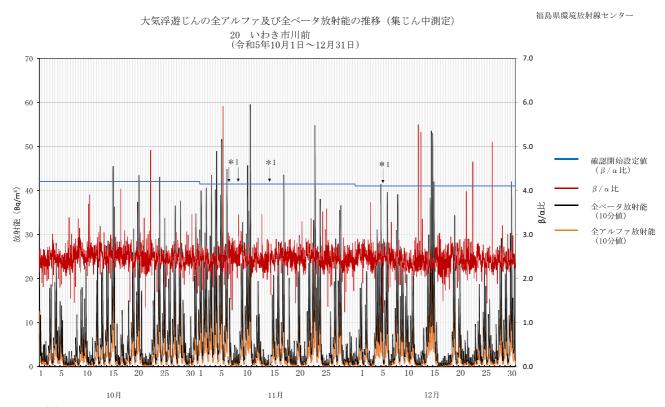



\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$  比が高く算出される場合があること、また、放射能濃度が低いことにより  $\beta/\alpha$  比のばらつきが大きくなる場合があるとされています。

### 大気浮遊じんの全アルファ及び全ベータ放射能の推移(集じん中測定) 17 川俣町山木屋 (令和5年10月1日~12月31日)

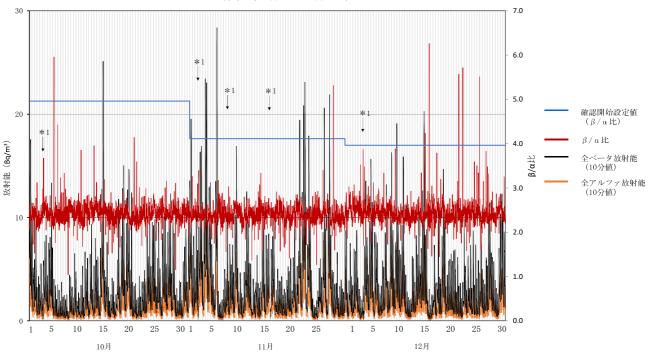



\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。

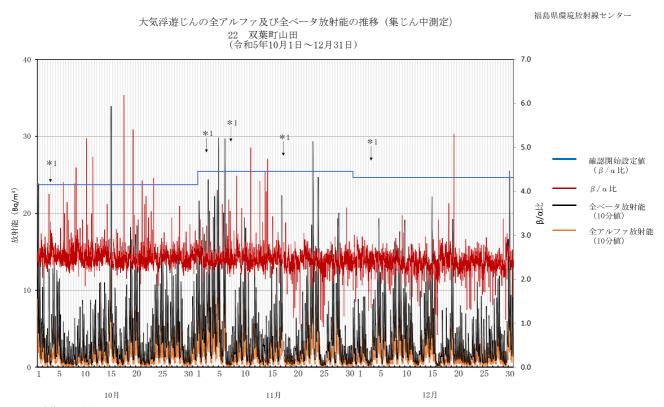



\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ペータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。

### 大気浮遊じんの全アルファ及び全ベータ放射能の推移(集じん中測定) 19 いわき市下桶売 (令和5年10月1日~12月31日)




\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。

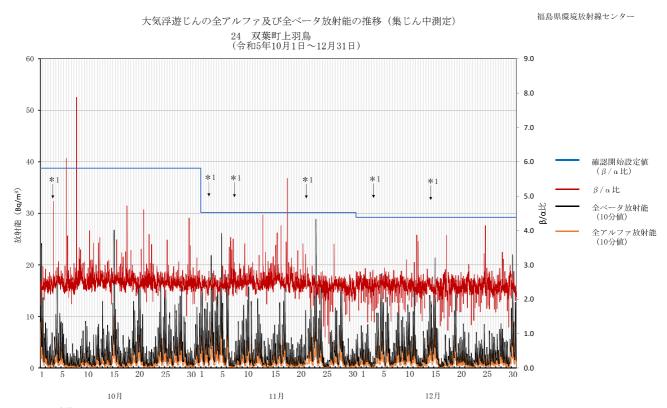



\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$  比が高く算出される場合があること、また、放射能濃度が低いことにより  $\beta/\alpha$  比のばらつきが大きくなる場合があるとされています。

#### 大気浮遊じんの全アルファ及び全ベータ放射能の推移(集じん中測定) 21 大熊町向畑 (令和5年10月1日~12月31日)

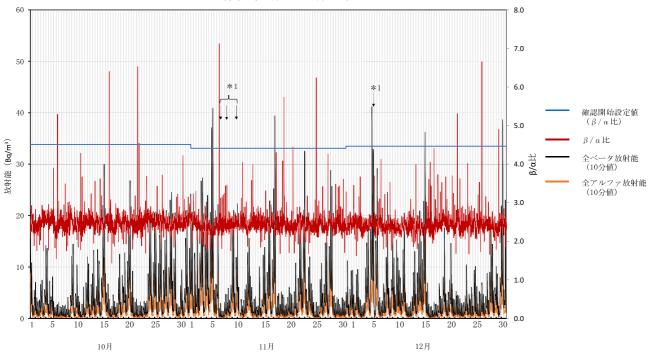



\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。

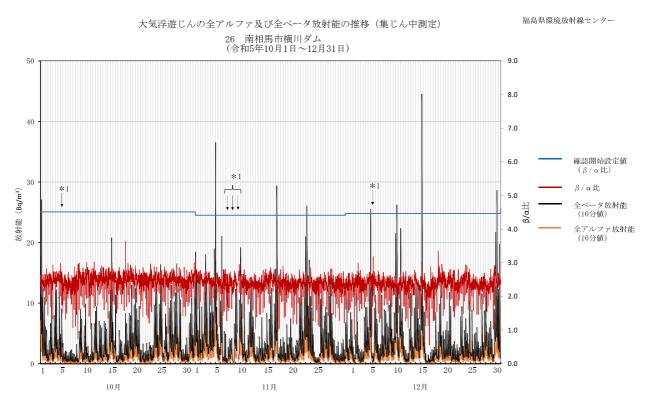



\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$  比が高く算出される場合があること、また、放射能濃度が低いことにより  $\beta/\alpha$  比のばらつきが大きくなる場合があるとされています。

#### 大気浮遊じんの全アルファ及び全ベータ放射能の推移(集じん中測定) 23 双葉町新山 (令和5年10月1日~12月31日)

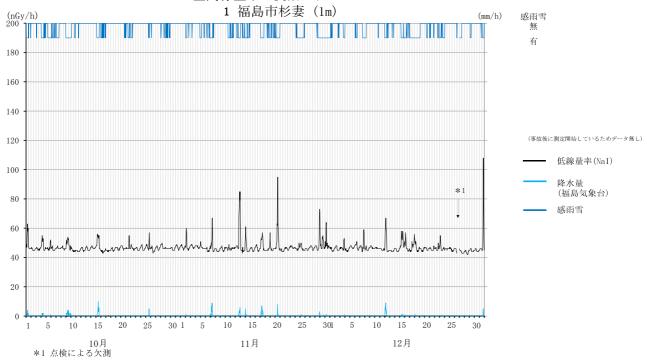



\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ペータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。

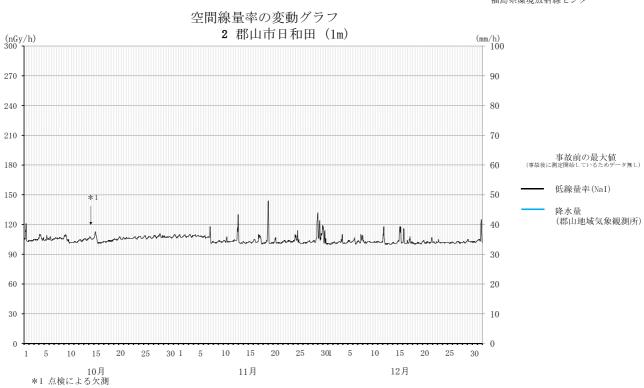



\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$  比が高く算出される場合があること、また、放射能濃度が低いことにより  $\beta/\alpha$  比のばらつきが大きくなる場合があるとされています。

## 




\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ベータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。




\*1 点検による欠測 ろ紙送り直後は大気浮遊じんがろ紙の内部に入り込み、見かけ上相対的に全ペータ放射能が全アルファ放射能に比べて高くなり、 $\beta/\alpha$ 比が高く算出される場合があること、また、放射能濃度が低いことにより $\beta/\alpha$ 比のばらつきが大きくなる場合があるとされています。

## 空間線量率の変動グラフ



## 福島県環境放射線センター



#### 空間線量率の変動グラフ 3 いわき市平 (1m) (nGy/h) 200 (mm/h) 100 事故前の最大値 (事故後に測定開始しているためデータ無し) 低線量率(NaI) 降水量 (平地域気象観測所) 30 1

12月

11月

10月 \*1 点検による欠測